Metamath Proof Explorer


Theorem mapdh6gN

Description: Lemmma for mapdh6N . Part (6) of Baer p. 47 line 39. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdh6d.xn φ ¬ X N Y Z
mapdh6d.yz φ N Y = N Z
mapdh6d.y φ Y V 0 ˙
mapdh6d.z φ Z V 0 ˙
mapdh6d.w φ w V 0 ˙
mapdh6d.wn φ ¬ w N X Y
Assertion mapdh6gN φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdh6d.xn φ ¬ X N Y Z
21 mapdh6d.yz φ N Y = N Z
22 mapdh6d.y φ Y V 0 ˙
23 mapdh6d.z φ Z V 0 ˙
24 mapdh6d.w φ w V 0 ˙
25 mapdh6d.wn φ ¬ w N X Y
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6dN φ I X F w + ˙ Y + ˙ Z = I X F w ˙ I X F Y + ˙ Z
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6eN φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y ˙ I X F Z
28 3 5 14 dvhlmod φ U LMod
29 24 eldifad φ w V
30 22 eldifad φ Y V
31 23 eldifad φ Z V
32 6 18 lmodass U LMod w V Y V Z V w + ˙ Y + ˙ Z = w + ˙ Y + ˙ Z
33 28 29 30 31 32 syl13anc φ w + ˙ Y + ˙ Z = w + ˙ Y + ˙ Z
34 33 oteq3d φ X F w + ˙ Y + ˙ Z = X F w + ˙ Y + ˙ Z
35 34 fveq2d φ I X F w + ˙ Y + ˙ Z = I X F w + ˙ Y + ˙ Z
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6fN φ I X F w + ˙ Y = I X F w ˙ I X F Y
37 36 oveq1d φ I X F w + ˙ Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
38 27 35 37 3eqtr3d φ I X F w + ˙ Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
39 26 38 eqtr3d φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z