Metamath Proof Explorer


Theorem mapdh8b

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8b.f φ G D
mapdh8b.mn φ M N Y = J G
mapdh8b.a φ I Y G w = E
mapdh8b.x φ Y V 0 ˙
mapdh8b.y φ w V 0 ˙
mapdh8b.yz φ N w N T
mapdh8b.xt φ T V 0 ˙
mapdh8b.vw φ N Y N w
mapdh8b.e φ X N Y T
mapdh8b.xn φ ¬ X N Y w
Assertion mapdh8b φ I w E T = I Y G T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8b.f φ G D
16 mapdh8b.mn φ M N Y = J G
17 mapdh8b.a φ I Y G w = E
18 mapdh8b.x φ Y V 0 ˙
19 mapdh8b.y φ w V 0 ˙
20 mapdh8b.yz φ N w N T
21 mapdh8b.xt φ T V 0 ˙
22 mapdh8b.vw φ N Y N w
23 mapdh8b.e φ X N Y T
24 mapdh8b.xn φ ¬ X N Y w
25 1 2 14 dvhlvec φ U LVec
26 18 eldifad φ Y V
27 19 eldifad φ w V
28 21 eldifad φ T V
29 3 6 25 26 27 28 23 24 lspindp5 φ ¬ T N Y w
30 prcom w T = T w
31 30 fveq2i N w T = N T w
32 31 eleq2i Y N w T Y N T w
33 25 adantr φ Y N T w U LVec
34 18 adantr φ Y N T w Y V 0 ˙
35 28 adantr φ Y N T w T V
36 27 adantr φ Y N T w w V
37 22 adantr φ Y N T w N Y N w
38 simpr φ Y N T w Y N T w
39 3 5 6 33 34 35 36 37 38 lspexch φ Y N T w T N Y w
40 39 ex φ Y N T w T N Y w
41 32 40 syl5bi φ Y N w T T N Y w
42 29 41 mtod φ ¬ Y N w T
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 42 mapdh8a φ I w E T = I Y G T