Metamath Proof Explorer


Theorem mapdpglem1

Description: Lemma for mapdpg . Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
Assertion mapdpglem1 φMNX-˙YMNX˙MNY

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 1 3 8 dvhlmod φULMod
13 eqid LSSumU=LSSumU
14 4 5 13 6 lspsntrim ULModXVYVNX-˙YNXLSSumUNY
15 12 9 10 14 syl3anc φNX-˙YNXLSSumUNY
16 eqid LSubSpU=LSubSpU
17 4 5 lmodvsubcl ULModXVYVX-˙YV
18 12 9 10 17 syl3anc φX-˙YV
19 4 16 6 lspsncl ULModX-˙YVNX-˙YLSubSpU
20 12 18 19 syl2anc φNX-˙YLSubSpU
21 4 16 6 lspsncl ULModXVNXLSubSpU
22 12 9 21 syl2anc φNXLSubSpU
23 4 16 6 lspsncl ULModYVNYLSubSpU
24 12 10 23 syl2anc φNYLSubSpU
25 16 13 lsmcl ULModNXLSubSpUNYLSubSpUNXLSSumUNYLSubSpU
26 12 22 24 25 syl3anc φNXLSSumUNYLSubSpU
27 1 3 16 2 8 20 26 mapdord φMNX-˙YMNXLSSumUNYNX-˙YNXLSSumUNY
28 15 27 mpbird φMNX-˙YMNXLSSumUNY
29 1 2 3 16 13 7 11 8 22 24 mapdlsm φMNXLSSumUNY=MNX˙MNY
30 28 29 sseqtrd φMNX-˙YMNX˙MNY