Description: Lemma for mapdpg . Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpglem.h | |
|
mapdpglem.m | |
||
mapdpglem.u | |
||
mapdpglem.v | |
||
mapdpglem.s | |
||
mapdpglem.n | |
||
mapdpglem.c | |
||
mapdpglem.k | |
||
mapdpglem.x | |
||
mapdpglem.y | |
||
mapdpglem1.p | |
||
Assertion | mapdpglem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | |
|
2 | mapdpglem.m | |
|
3 | mapdpglem.u | |
|
4 | mapdpglem.v | |
|
5 | mapdpglem.s | |
|
6 | mapdpglem.n | |
|
7 | mapdpglem.c | |
|
8 | mapdpglem.k | |
|
9 | mapdpglem.x | |
|
10 | mapdpglem.y | |
|
11 | mapdpglem1.p | |
|
12 | 1 3 8 | dvhlmod | |
13 | eqid | |
|
14 | 4 5 13 6 | lspsntrim | |
15 | 12 9 10 14 | syl3anc | |
16 | eqid | |
|
17 | 4 5 | lmodvsubcl | |
18 | 12 9 10 17 | syl3anc | |
19 | 4 16 6 | lspsncl | |
20 | 12 18 19 | syl2anc | |
21 | 4 16 6 | lspsncl | |
22 | 12 9 21 | syl2anc | |
23 | 4 16 6 | lspsncl | |
24 | 12 10 23 | syl2anc | |
25 | 16 13 | lsmcl | |
26 | 12 22 24 25 | syl3anc | |
27 | 1 3 16 2 8 20 26 | mapdord | |
28 | 15 27 | mpbird | |
29 | 1 2 3 16 13 7 11 8 22 24 | mapdlsm | |
30 | 28 29 | sseqtrd | |