Metamath Proof Explorer


Theorem mapdpglem5N

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
Assertion mapdpglem5N φ t 0 C

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 eqid LSAtoms U = LSAtoms U
25 eqid LSAtoms C = LSAtoms C
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 mapdpglem4N φ X - ˙ Y Q
27 1 3 8 dvhlmod φ U LMod
28 4 5 lmodvsubcl U LMod X V Y V X - ˙ Y V
29 27 9 10 28 syl3anc φ X - ˙ Y V
30 4 6 21 24 27 29 lsatspn0 φ N X - ˙ Y LSAtoms U X - ˙ Y Q
31 26 30 mpbird φ N X - ˙ Y LSAtoms U
32 1 2 3 24 7 25 8 31 mapdat φ M N X - ˙ Y LSAtoms C
33 23 32 eqeltrrd φ J t LSAtoms C
34 eqid 0 C = 0 C
35 1 7 8 lcdlmod φ C LMod
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mapdpglem2a φ t F
37 13 12 34 25 35 36 lsatspn0 φ J t LSAtoms C t 0 C
38 33 37 mpbid φ t 0 C