Metamath Proof Explorer


Theorem marepvcl

Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
Assertion marepvcl RRingMBCVKNMNmatRepVRCKB

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 eqid NmatRepVR=NmatRepVR
5 1 2 4 3 marepvval MBCVKNMNmatRepVRCK=iN,jNifj=KCiiMj
6 5 adantl RRingMBCVKNMNmatRepVRCK=iN,jNifj=KCiiMj
7 eqid BaseR=BaseR
8 1 2 matrcl MBNFinRV
9 8 simpld MBNFin
10 9 3ad2ant1 MBCVKNNFin
11 10 adantl RRingMBCVKNNFin
12 simpl RRingMBCVKNRRing
13 elmapi CBaseRNC:NBaseR
14 ffvelcdm C:NBaseRiNCiBaseR
15 14 ex C:NBaseRiNCiBaseR
16 13 15 syl CBaseRNiNCiBaseR
17 16 3 eleq2s CViNCiBaseR
18 17 3ad2ant2 MBCVKNiNCiBaseR
19 18 adantl RRingMBCVKNiNCiBaseR
20 19 imp RRingMBCVKNiNCiBaseR
21 20 3adant3 RRingMBCVKNiNjNCiBaseR
22 simp2 RRingMBCVKNiNjNiN
23 simp3 RRingMBCVKNiNjNjN
24 2 eleq2i MBMBaseA
25 24 biimpi MBMBaseA
26 25 3ad2ant1 MBCVKNMBaseA
27 26 adantl RRingMBCVKNMBaseA
28 27 3ad2ant1 RRingMBCVKNiNjNMBaseA
29 1 7 matecl iNjNMBaseAiMjBaseR
30 22 23 28 29 syl3anc RRingMBCVKNiNjNiMjBaseR
31 21 30 ifcld RRingMBCVKNiNjNifj=KCiiMjBaseR
32 1 7 2 11 12 31 matbas2d RRingMBCVKNiN,jNifj=KCiiMjB
33 6 32 eqeltrd RRingMBCVKNMNmatRepVRCKB