Metamath Proof Explorer


Theorem maxlp

Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis lpfval.1 X=J
Assertion maxlp JTopPlimPtJXPX¬PJ

Proof

Step Hyp Ref Expression
1 lpfval.1 X=J
2 ssid XX
3 1 lpss JTopXXlimPtJXX
4 2 3 mpan2 JToplimPtJXX
5 4 sseld JTopPlimPtJXPX
6 5 pm4.71rd JTopPlimPtJXPXPlimPtJX
7 simpl JTopPXJTop
8 1 islp JTopXXPlimPtJXPclsJXP
9 7 2 8 sylancl JTopPXPlimPtJXPclsJXP
10 snssi PXPX
11 1 clsdif JTopPXclsJXP=XintJP
12 10 11 sylan2 JTopPXclsJXP=XintJP
13 12 eleq2d JTopPXPclsJXPPXintJP
14 eldif PXintJPPX¬PintJP
15 14 baib PXPXintJP¬PintJP
16 15 adantl JTopPXPXintJP¬PintJP
17 snssi PintJPPintJP
18 17 adantl JTopPXPintJPPintJP
19 1 ntrss2 JTopPXintJPP
20 10 19 sylan2 JTopPXintJPP
21 20 adantr JTopPXPintJPintJPP
22 18 21 eqssd JTopPXPintJPP=intJP
23 1 ntropn JTopPXintJPJ
24 10 23 sylan2 JTopPXintJPJ
25 24 adantr JTopPXPintJPintJPJ
26 22 25 eqeltrd JTopPXPintJPPJ
27 snidg PXPP
28 27 ad2antlr JTopPXPJPP
29 isopn3i JTopPJintJP=P
30 29 adantlr JTopPXPJintJP=P
31 28 30 eleqtrrd JTopPXPJPintJP
32 26 31 impbida JTopPXPintJPPJ
33 32 notbid JTopPX¬PintJP¬PJ
34 16 33 bitrd JTopPXPXintJP¬PJ
35 9 13 34 3bitrd JTopPXPlimPtJX¬PJ
36 35 pm5.32da JTopPXPlimPtJXPX¬PJ
37 6 36 bitrd JTopPlimPtJXPX¬PJ