Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lpfval.1 | |
|
Assertion | maxlp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | |
|
2 | ssid | |
|
3 | 1 | lpss | |
4 | 2 3 | mpan2 | |
5 | 4 | sseld | |
6 | 5 | pm4.71rd | |
7 | simpl | |
|
8 | 1 | islp | |
9 | 7 2 8 | sylancl | |
10 | snssi | |
|
11 | 1 | clsdif | |
12 | 10 11 | sylan2 | |
13 | 12 | eleq2d | |
14 | eldif | |
|
15 | 14 | baib | |
16 | 15 | adantl | |
17 | snssi | |
|
18 | 17 | adantl | |
19 | 1 | ntrss2 | |
20 | 10 19 | sylan2 | |
21 | 20 | adantr | |
22 | 18 21 | eqssd | |
23 | 1 | ntropn | |
24 | 10 23 | sylan2 | |
25 | 24 | adantr | |
26 | 22 25 | eqeltrd | |
27 | snidg | |
|
28 | 27 | ad2antlr | |
29 | isopn3i | |
|
30 | 29 | adantlr | |
31 | 28 30 | eleqtrrd | |
32 | 26 31 | impbida | |
33 | 32 | notbid | |
34 | 16 33 | bitrd | |
35 | 9 13 34 | 3bitrd | |
36 | 35 | pm5.32da | |
37 | 6 36 | bitrd | |