Metamath Proof Explorer


Theorem mclsval

Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
mclsval.h H = mVH T
mclsval.a A = mAx T
mclsval.s S = mSubst T
mclsval.v V = mVars T
Assertion mclsval φ K C B = c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 mclsval.h H = mVH T
8 mclsval.a A = mAx T
9 mclsval.s S = mSubst T
10 mclsval.v V = mVars T
11 elex T mFS T V
12 fveq2 t = T mDV t = mDV T
13 12 1 syl6eqr t = T mDV t = D
14 13 pweqd t = T 𝒫 mDV t = 𝒫 D
15 fveq2 t = T mEx t = mEx T
16 15 2 syl6eqr t = T mEx t = E
17 16 pweqd t = T 𝒫 mEx t = 𝒫 E
18 fveq2 t = T mVH t = mVH T
19 18 7 syl6eqr t = T mVH t = H
20 19 rneqd t = T ran mVH t = ran H
21 20 uneq2d t = T h ran mVH t = h ran H
22 21 sseq1d t = T h ran mVH t c h ran H c
23 fveq2 t = T mAx t = mAx T
24 23 8 syl6eqr t = T mAx t = A
25 24 eleq2d t = T m o p mAx t m o p A
26 fveq2 t = T mSubst t = mSubst T
27 26 9 syl6eqr t = T mSubst t = S
28 27 rneqd t = T ran mSubst t = ran S
29 20 uneq2d t = T o ran mVH t = o ran H
30 29 imaeq2d t = T s o ran mVH t = s o ran H
31 30 sseq1d t = T s o ran mVH t c s o ran H c
32 fveq2 t = T mVars t = mVars T
33 32 10 syl6eqr t = T mVars t = V
34 19 fveq1d t = T mVH t x = H x
35 34 fveq2d t = T s mVH t x = s H x
36 33 35 fveq12d t = T mVars t s mVH t x = V s H x
37 19 fveq1d t = T mVH t y = H y
38 37 fveq2d t = T s mVH t y = s H y
39 33 38 fveq12d t = T mVars t s mVH t y = V s H y
40 36 39 xpeq12d t = T mVars t s mVH t x × mVars t s mVH t y = V s H x × V s H y
41 40 sseq1d t = T mVars t s mVH t x × mVars t s mVH t y d V s H x × V s H y d
42 41 imbi2d t = T x m y mVars t s mVH t x × mVars t s mVH t y d x m y V s H x × V s H y d
43 42 2albidv t = T x y x m y mVars t s mVH t x × mVars t s mVH t y d x y x m y V s H x × V s H y d
44 31 43 anbi12d t = T s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s o ran H c x y x m y V s H x × V s H y d
45 44 imbi1d t = T s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c s o ran H c x y x m y V s H x × V s H y d s p c
46 28 45 raleqbidv t = T s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c s ran S s o ran H c x y x m y V s H x × V s H y d s p c
47 25 46 imbi12d t = T m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
48 47 albidv t = T p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
49 48 2albidv t = T m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
50 22 49 anbi12d t = T h ran mVH t c m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
51 50 abbidv t = T c | h ran mVH t c m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c = c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
52 51 inteqd t = T c | h ran mVH t c m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c = c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
53 14 17 52 mpoeq123dv t = T d 𝒫 mDV t , h 𝒫 mEx t c | h ran mVH t c m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c = d 𝒫 D , h 𝒫 E c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
54 df-mcls mCls = t V d 𝒫 mDV t , h 𝒫 mEx t c | h ran mVH t c m o p m o p mAx t s ran mSubst t s o ran mVH t c x y x m y mVars t s mVH t x × mVars t s mVH t y d s p c
55 1 fvexi D V
56 55 pwex 𝒫 D V
57 2 fvexi E V
58 57 pwex 𝒫 E V
59 56 58 mpoex d 𝒫 D , h 𝒫 E c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c V
60 53 54 59 fvmpt T V mCls T = d 𝒫 D , h 𝒫 E c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
61 4 11 60 3syl φ mCls T = d 𝒫 D , h 𝒫 E c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
62 3 61 syl5eq φ C = d 𝒫 D , h 𝒫 E c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c
63 simprr φ d = K h = B h = B
64 63 uneq1d φ d = K h = B h ran H = B ran H
65 64 sseq1d φ d = K h = B h ran H c B ran H c
66 simprl φ d = K h = B d = K
67 66 sseq2d φ d = K h = B V s H x × V s H y d V s H x × V s H y K
68 67 imbi2d φ d = K h = B x m y V s H x × V s H y d x m y V s H x × V s H y K
69 68 2albidv φ d = K h = B x y x m y V s H x × V s H y d x y x m y V s H x × V s H y K
70 69 anbi2d φ d = K h = B s o ran H c x y x m y V s H x × V s H y d s o ran H c x y x m y V s H x × V s H y K
71 70 imbi1d φ d = K h = B s o ran H c x y x m y V s H x × V s H y d s p c s o ran H c x y x m y V s H x × V s H y K s p c
72 71 ralbidv φ d = K h = B s ran S s o ran H c x y x m y V s H x × V s H y d s p c s ran S s o ran H c x y x m y V s H x × V s H y K s p c
73 72 imbi2d φ d = K h = B m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
74 73 albidv φ d = K h = B p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
75 74 2albidv φ d = K h = B m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
76 65 75 anbi12d φ d = K h = B h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
77 76 abbidv φ d = K h = B c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c = c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
78 77 inteqd φ d = K h = B c | h ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y d s p c = c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
79 55 elpw2 K 𝒫 D K D
80 5 79 sylibr φ K 𝒫 D
81 57 elpw2 B 𝒫 E B E
82 6 81 sylibr φ B 𝒫 E
83 1 2 3 4 5 6 7 8 9 10 mclsssvlem φ c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c E
84 57 ssex c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c E c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c V
85 83 84 syl φ c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c V
86 62 78 80 82 85 ovmpod φ K C B = c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c