Metamath Proof Explorer


Theorem mclsval

Description: The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
mclsval.h H=mVHT
mclsval.a A=mAxT
mclsval.s S=mSubstT
mclsval.v V=mVarsT
Assertion mclsval φKCB=c|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 mclsval.h H=mVHT
8 mclsval.a A=mAxT
9 mclsval.s S=mSubstT
10 mclsval.v V=mVarsT
11 elex TmFSTV
12 fveq2 t=TmDVt=mDVT
13 12 1 eqtr4di t=TmDVt=D
14 13 pweqd t=T𝒫mDVt=𝒫D
15 fveq2 t=TmExt=mExT
16 15 2 eqtr4di t=TmExt=E
17 16 pweqd t=T𝒫mExt=𝒫E
18 fveq2 t=TmVHt=mVHT
19 18 7 eqtr4di t=TmVHt=H
20 19 rneqd t=TranmVHt=ranH
21 20 uneq2d t=ThranmVHt=hranH
22 21 sseq1d t=ThranmVHtchranHc
23 fveq2 t=TmAxt=mAxT
24 23 8 eqtr4di t=TmAxt=A
25 24 eleq2d t=TmopmAxtmopA
26 fveq2 t=TmSubstt=mSubstT
27 26 9 eqtr4di t=TmSubstt=S
28 27 rneqd t=TranmSubstt=ranS
29 20 uneq2d t=ToranmVHt=oranH
30 29 imaeq2d t=TsoranmVHt=soranH
31 30 sseq1d t=TsoranmVHtcsoranHc
32 fveq2 t=TmVarst=mVarsT
33 32 10 eqtr4di t=TmVarst=V
34 19 fveq1d t=TmVHtx=Hx
35 34 fveq2d t=TsmVHtx=sHx
36 33 35 fveq12d t=TmVarstsmVHtx=VsHx
37 19 fveq1d t=TmVHty=Hy
38 37 fveq2d t=TsmVHty=sHy
39 33 38 fveq12d t=TmVarstsmVHty=VsHy
40 36 39 xpeq12d t=TmVarstsmVHtx×mVarstsmVHty=VsHx×VsHy
41 40 sseq1d t=TmVarstsmVHtx×mVarstsmVHtydVsHx×VsHyd
42 41 imbi2d t=TxmymVarstsmVHtx×mVarstsmVHtydxmyVsHx×VsHyd
43 42 2albidv t=TxyxmymVarstsmVHtx×mVarstsmVHtydxyxmyVsHx×VsHyd
44 31 43 anbi12d t=TsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydsoranHcxyxmyVsHx×VsHyd
45 44 imbi1d t=TsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcsoranHcxyxmyVsHx×VsHydspc
46 28 45 raleqbidv t=TsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcsranSsoranHcxyxmyVsHx×VsHydspc
47 25 46 imbi12d t=TmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcmopAsranSsoranHcxyxmyVsHx×VsHydspc
48 47 albidv t=TpmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcpmopAsranSsoranHcxyxmyVsHx×VsHydspc
49 48 2albidv t=TmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
50 22 49 anbi12d t=ThranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspchranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
51 50 abbidv t=Tc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc=c|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
52 51 inteqd t=Tc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc=c|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
53 14 17 52 mpoeq123dv t=Td𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc=d𝒫D,h𝒫Ec|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
54 df-mcls mCls=tVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
55 1 fvexi DV
56 55 pwex 𝒫DV
57 2 fvexi EV
58 57 pwex 𝒫EV
59 56 58 mpoex d𝒫D,h𝒫Ec|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspcV
60 53 54 59 fvmpt TVmClsT=d𝒫D,h𝒫Ec|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
61 4 11 60 3syl φmClsT=d𝒫D,h𝒫Ec|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
62 3 61 eqtrid φC=d𝒫D,h𝒫Ec|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc
63 simprr φd=Kh=Bh=B
64 63 uneq1d φd=Kh=BhranH=BranH
65 64 sseq1d φd=Kh=BhranHcBranHc
66 simprl φd=Kh=Bd=K
67 66 sseq2d φd=Kh=BVsHx×VsHydVsHx×VsHyK
68 67 imbi2d φd=Kh=BxmyVsHx×VsHydxmyVsHx×VsHyK
69 68 2albidv φd=Kh=BxyxmyVsHx×VsHydxyxmyVsHx×VsHyK
70 69 anbi2d φd=Kh=BsoranHcxyxmyVsHx×VsHydsoranHcxyxmyVsHx×VsHyK
71 70 imbi1d φd=Kh=BsoranHcxyxmyVsHx×VsHydspcsoranHcxyxmyVsHx×VsHyKspc
72 71 ralbidv φd=Kh=BsranSsoranHcxyxmyVsHx×VsHydspcsranSsoranHcxyxmyVsHx×VsHyKspc
73 72 imbi2d φd=Kh=BmopAsranSsoranHcxyxmyVsHx×VsHydspcmopAsranSsoranHcxyxmyVsHx×VsHyKspc
74 73 albidv φd=Kh=BpmopAsranSsoranHcxyxmyVsHx×VsHydspcpmopAsranSsoranHcxyxmyVsHx×VsHyKspc
75 74 2albidv φd=Kh=BmopmopAsranSsoranHcxyxmyVsHx×VsHydspcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc
76 65 75 anbi12d φd=Kh=BhranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspcBranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc
77 76 abbidv φd=Kh=Bc|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc=c|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc
78 77 inteqd φd=Kh=Bc|hranHcmopmopAsranSsoranHcxyxmyVsHx×VsHydspc=c|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc
79 55 elpw2 K𝒫DKD
80 5 79 sylibr φK𝒫D
81 57 elpw2 B𝒫EBE
82 6 81 sylibr φB𝒫E
83 1 2 3 4 5 6 7 8 9 10 mclsssvlem φc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcE
84 57 ssex c|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcEc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcV
85 83 84 syl φc|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspcV
86 62 78 80 82 85 ovmpod φKCB=c|BranHcmopmopAsranSsoranHcxyxmyVsHx×VsHyKspc