Metamath Proof Explorer


Theorem mdbr3

Description: Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion mdbr3 ACBCA𝑀BxCxBAB=xBAB

Proof

Step Hyp Ref Expression
1 mdbr ACBCA𝑀ByCyByAB=yAB
2 chincl xCBCxBC
3 inss2 xBB
4 sseq1 y=xByBxBB
5 oveq1 y=xByA=xBA
6 5 ineq1d y=xByAB=xBAB
7 oveq1 y=xByAB=xBAB
8 6 7 eqeq12d y=xByAB=yABxBAB=xBAB
9 4 8 imbi12d y=xByByAB=yABxBBxBAB=xBAB
10 9 rspcv xBCyCyByAB=yABxBBxBAB=xBAB
11 3 10 mpii xBCyCyByAB=yABxBAB=xBAB
12 2 11 syl xCBCyCyByAB=yABxBAB=xBAB
13 12 ex xCBCyCyByAB=yABxBAB=xBAB
14 13 com3l BCyCyByAB=yABxCxBAB=xBAB
15 14 ralrimdv BCyCyByAB=yABxCxBAB=xBAB
16 dfss xBx=xB
17 16 biimpi xBx=xB
18 17 oveq1d xBxA=xBA
19 18 ineq1d xBxAB=xBAB
20 17 oveq1d xBxAB=xBAB
21 19 20 eqeq12d xBxAB=xABxBAB=xBAB
22 21 biimprcd xBAB=xBABxBxAB=xAB
23 22 ralimi xCxBAB=xBABxCxBxAB=xAB
24 sseq1 x=yxByB
25 oveq1 x=yxA=yA
26 25 ineq1d x=yxAB=yAB
27 oveq1 x=yxAB=yAB
28 26 27 eqeq12d x=yxAB=xAByAB=yAB
29 24 28 imbi12d x=yxBxAB=xAByByAB=yAB
30 29 cbvralvw xCxBxAB=xAByCyByAB=yAB
31 23 30 sylib xCxBAB=xBAByCyByAB=yAB
32 15 31 impbid1 BCyCyByAB=yABxCxBAB=xBAB
33 32 adantl ACBCyCyByAB=yABxCxBAB=xBAB
34 1 33 bitrd ACBCA𝑀BxCxBAB=xBAB