Metamath Proof Explorer


Theorem mdegfval

Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mdegval.d D = I mDeg R
mdegval.p P = I mPoly R
mdegval.b B = Base P
mdegval.z 0 ˙ = 0 R
mdegval.a A = m 0 I | m -1 Fin
mdegval.h H = h A fld h
Assertion mdegfval D = f B sup H f supp 0 ˙ * <

Proof

Step Hyp Ref Expression
1 mdegval.d D = I mDeg R
2 mdegval.p P = I mPoly R
3 mdegval.b B = Base P
4 mdegval.z 0 ˙ = 0 R
5 mdegval.a A = m 0 I | m -1 Fin
6 mdegval.h H = h A fld h
7 oveq12 i = I r = R i mPoly r = I mPoly R
8 7 2 syl6eqr i = I r = R i mPoly r = P
9 8 fveq2d i = I r = R Base i mPoly r = Base P
10 9 3 syl6eqr i = I r = R Base i mPoly r = B
11 fveq2 r = R 0 r = 0 R
12 11 4 syl6eqr r = R 0 r = 0 ˙
13 12 oveq2d r = R f supp 0 r = f supp 0 ˙
14 13 mpteq1d r = R h supp 0 r f fld h = h supp 0 ˙ f fld h
15 14 rneqd r = R ran h supp 0 r f fld h = ran h supp 0 ˙ f fld h
16 15 supeq1d r = R sup ran h supp 0 r f fld h * < = sup ran h supp 0 ˙ f fld h * <
17 16 adantl i = I r = R sup ran h supp 0 r f fld h * < = sup ran h supp 0 ˙ f fld h * <
18 10 17 mpteq12dv i = I r = R f Base i mPoly r sup ran h supp 0 r f fld h * < = f B sup ran h supp 0 ˙ f fld h * <
19 df-mdeg mDeg = i V , r V f Base i mPoly r sup ran h supp 0 r f fld h * <
20 3 fvexi B V
21 20 mptex f B sup ran h supp 0 ˙ f fld h * < V
22 18 19 21 ovmpoa I V R V I mDeg R = f B sup ran h supp 0 ˙ f fld h * <
23 6 reseq1i H supp 0 ˙ f = h A fld h supp 0 ˙ f
24 suppssdm f supp 0 ˙ dom f
25 eqid Base R = Base R
26 simpr I V R V f B f B
27 2 25 3 5 26 mplelf I V R V f B f : A Base R
28 24 27 fssdm I V R V f B f supp 0 ˙ A
29 28 resmptd I V R V f B h A fld h supp 0 ˙ f = h supp 0 ˙ f fld h
30 23 29 syl5req I V R V f B h supp 0 ˙ f fld h = H supp 0 ˙ f
31 30 rneqd I V R V f B ran h supp 0 ˙ f fld h = ran H supp 0 ˙ f
32 df-ima H f supp 0 ˙ = ran H supp 0 ˙ f
33 31 32 syl6eqr I V R V f B ran h supp 0 ˙ f fld h = H f supp 0 ˙
34 33 supeq1d I V R V f B sup ran h supp 0 ˙ f fld h * < = sup H f supp 0 ˙ * <
35 34 mpteq2dva I V R V f B sup ran h supp 0 ˙ f fld h * < = f B sup H f supp 0 ˙ * <
36 22 35 eqtrd I V R V I mDeg R = f B sup H f supp 0 ˙ * <
37 reldmmdeg Rel dom mDeg
38 37 ovprc ¬ I V R V I mDeg R =
39 mpt0 f sup H f supp 0 ˙ * < =
40 38 39 syl6eqr ¬ I V R V I mDeg R = f sup H f supp 0 ˙ * <
41 reldmmpl Rel dom mPoly
42 41 ovprc ¬ I V R V I mPoly R =
43 2 42 syl5eq ¬ I V R V P =
44 43 fveq2d ¬ I V R V Base P = Base
45 base0 = Base
46 44 3 45 3eqtr4g ¬ I V R V B =
47 46 mpteq1d ¬ I V R V f B sup H f supp 0 ˙ * < = f sup H f supp 0 ˙ * <
48 40 47 eqtr4d ¬ I V R V I mDeg R = f B sup H f supp 0 ˙ * <
49 36 48 pm2.61i I mDeg R = f B sup H f supp 0 ˙ * <
50 1 49 eqtri D = f B sup H f supp 0 ˙ * <