| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetdiag.d |
|
| 2 |
|
mdetdiag.a |
|
| 3 |
|
mdetdiag.b |
|
| 4 |
|
mdetdiag.g |
|
| 5 |
|
mdetdiag.0 |
|
| 6 |
|
mdetdiagid.c |
|
| 7 |
|
mdetdiagid.t |
|
| 8 |
|
simpl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpr |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simpl |
|
| 13 |
12
|
adantl |
|
| 14 |
9 11 13
|
3jca |
|
| 15 |
14
|
adantr |
|
| 16 |
|
id |
|
| 17 |
|
ifnefalse |
|
| 18 |
17
|
adantl |
|
| 19 |
16 18
|
sylan9eqr |
|
| 20 |
19
|
exp31 |
|
| 21 |
20
|
com23 |
|
| 22 |
21
|
ralimdva |
|
| 23 |
22
|
ralimdva |
|
| 24 |
23
|
imp |
|
| 25 |
1 2 3 4 5
|
mdetdiag |
|
| 26 |
15 24 25
|
sylc |
|
| 27 |
|
oveq1 |
|
| 28 |
|
equequ1 |
|
| 29 |
28
|
ifbid |
|
| 30 |
27 29
|
eqeq12d |
|
| 31 |
|
oveq2 |
|
| 32 |
|
equequ2 |
|
| 33 |
32
|
ifbid |
|
| 34 |
31 33
|
eqeq12d |
|
| 35 |
30 34
|
rspc2v |
|
| 36 |
35
|
anidms |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
imp |
|
| 39 |
|
equid |
|
| 40 |
39
|
iftruei |
|
| 41 |
38 40
|
eqtrdi |
|
| 42 |
41
|
an32s |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
43
|
oveq2d |
|
| 45 |
4
|
crngmgp |
|
| 46 |
|
cmnmnd |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
4 6
|
mgpbas |
|
| 51 |
50 7
|
gsumconst |
|
| 52 |
48 10 49 51
|
syl2an3an |
|
| 53 |
52
|
adantr |
|
| 54 |
26 44 53
|
3eqtrd |
|
| 55 |
54
|
ex |
|