Metamath Proof Explorer


Theorem mdetero

Description: The determinant function is multilinear (additive and homogeneous for each row (matrices are given explicitly by their entries). Corollary 4.9 in Lang p. 515. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetero.d D=NmaDetR
mdetero.k K=BaseR
mdetero.p +˙=+R
mdetero.t ·˙=R
mdetero.r φRCRing
mdetero.n φNFin
mdetero.x φjNXK
mdetero.y φjNYK
mdetero.z φiNjNZK
mdetero.w φWK
mdetero.i φIN
mdetero.j φJN
mdetero.ij φIJ
Assertion mdetero φDiN,jNifi=IX+˙W·˙Yifi=JYZ=DiN,jNifi=IXifi=JYZ

Proof

Step Hyp Ref Expression
1 mdetero.d D=NmaDetR
2 mdetero.k K=BaseR
3 mdetero.p +˙=+R
4 mdetero.t ·˙=R
5 mdetero.r φRCRing
6 mdetero.n φNFin
7 mdetero.x φjNXK
8 mdetero.y φjNYK
9 mdetero.z φiNjNZK
10 mdetero.w φWK
11 mdetero.i φIN
12 mdetero.j φJN
13 mdetero.ij φIJ
14 7 3adant2 φiNjNXK
15 crngring RCRingRRing
16 5 15 syl φRRing
17 16 3ad2ant1 φiNjNRRing
18 10 3ad2ant1 φiNjNWK
19 8 3adant2 φiNjNYK
20 2 4 ringcl RRingWKYKW·˙YK
21 17 18 19 20 syl3anc φiNjNW·˙YK
22 19 9 ifcld φiNjNifi=JYZK
23 1 2 3 5 6 14 21 22 11 mdetrlin2 φDiN,jNifi=IX+˙W·˙Yifi=JYZ=DiN,jNifi=IXifi=JYZ+˙DiN,jNifi=IW·˙Yifi=JYZ
24 1 2 4 5 6 19 22 10 11 mdetrsca2 φDiN,jNifi=IW·˙Yifi=JYZ=W·˙DiN,jNifi=IYifi=JYZ
25 eqid 0R=0R
26 1 2 25 5 6 8 9 11 12 13 mdetralt2 φDiN,jNifi=IYifi=JYZ=0R
27 26 oveq2d φW·˙DiN,jNifi=IYifi=JYZ=W·˙0R
28 2 4 25 ringrz RRingWKW·˙0R=0R
29 16 10 28 syl2anc φW·˙0R=0R
30 24 27 29 3eqtrd φDiN,jNifi=IW·˙Yifi=JYZ=0R
31 30 oveq2d φDiN,jNifi=IXifi=JYZ+˙DiN,jNifi=IW·˙Yifi=JYZ=DiN,jNifi=IXifi=JYZ+˙0R
32 ringgrp RRingRGrp
33 16 32 syl φRGrp
34 eqid NMatR=NMatR
35 eqid BaseNMatR=BaseNMatR
36 1 34 35 2 mdetf RCRingD:BaseNMatRK
37 5 36 syl φD:BaseNMatRK
38 14 22 ifcld φiNjNifi=IXifi=JYZK
39 34 2 35 6 5 38 matbas2d φiN,jNifi=IXifi=JYZBaseNMatR
40 37 39 ffvelcdmd φDiN,jNifi=IXifi=JYZK
41 2 3 25 grprid RGrpDiN,jNifi=IXifi=JYZKDiN,jNifi=IXifi=JYZ+˙0R=DiN,jNifi=IXifi=JYZ
42 33 40 41 syl2anc φDiN,jNifi=IXifi=JYZ+˙0R=DiN,jNifi=IXifi=JYZ
43 23 31 42 3eqtrd φDiN,jNifi=IX+˙W·˙Yifi=JYZ=DiN,jNifi=IXifi=JYZ