Description: The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetpmtr.a | |
|
mdetpmtr.b | |
||
mdetpmtr.d | |
||
mdetpmtr.g | |
||
mdetpmtr.s | |
||
mdetpmtr.z | |
||
mdetpmtr.t | |
||
mdetpmtr2.e | |
||
Assertion | mdetpmtr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetpmtr.a | |
|
2 | mdetpmtr.b | |
|
3 | mdetpmtr.d | |
|
4 | mdetpmtr.g | |
|
5 | mdetpmtr.s | |
|
6 | mdetpmtr.z | |
|
7 | mdetpmtr.t | |
|
8 | mdetpmtr2.e | |
|
9 | simpll | |
|
10 | simplr | |
|
11 | 1 2 | mattposcl | |
12 | 11 | ad2antrl | |
13 | simprr | |
|
14 | ovtpos | |
|
15 | 14 | eqcomi | |
16 | 15 | a1i | |
17 | 16 | mpoeq3ia | |
18 | 8 17 | eqtri | |
19 | 18 | tposmpo | |
20 | 1 2 3 4 5 6 7 19 | mdetpmtr1 | |
21 | 9 10 12 13 20 | syl22anc | |
22 | 3 1 2 | mdettpos | |
23 | 22 | ad2ant2r | |
24 | eqid | |
|
25 | simp2 | |
|
26 | 13 | 3ad2ant1 | |
27 | simp3 | |
|
28 | eqid | |
|
29 | 28 4 | symgfv | |
30 | 26 27 29 | syl2anc | |
31 | simp1rl | |
|
32 | 1 24 2 25 30 31 | matecld | |
33 | 1 24 2 10 9 32 | matbas2d | |
34 | 8 33 | eqeltrid | |
35 | 3 1 2 | mdettpos | |
36 | 9 34 35 | syl2anc | |
37 | 36 | oveq2d | |
38 | 21 23 37 | 3eqtr3d | |