Metamath Proof Explorer


Theorem mdetpmtr2

Description: The determinant of a matrix with permuted columns is the determinant of the original matrix multiplied by the sign of the permutation. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses mdetpmtr.a A=NMatR
mdetpmtr.b B=BaseA
mdetpmtr.d D=NmaDetR
mdetpmtr.g G=BaseSymGrpN
mdetpmtr.s S=pmSgnN
mdetpmtr.z Z=ℤRHomR
mdetpmtr.t ·˙=R
mdetpmtr2.e E=iN,jNiMPj
Assertion mdetpmtr2 RCRingNFinMBPGDM=ZSP·˙DE

Proof

Step Hyp Ref Expression
1 mdetpmtr.a A=NMatR
2 mdetpmtr.b B=BaseA
3 mdetpmtr.d D=NmaDetR
4 mdetpmtr.g G=BaseSymGrpN
5 mdetpmtr.s S=pmSgnN
6 mdetpmtr.z Z=ℤRHomR
7 mdetpmtr.t ·˙=R
8 mdetpmtr2.e E=iN,jNiMPj
9 simpll RCRingNFinMBPGRCRing
10 simplr RCRingNFinMBPGNFin
11 1 2 mattposcl MBtposMB
12 11 ad2antrl RCRingNFinMBPGtposMB
13 simprr RCRingNFinMBPGPG
14 ovtpos PjtposMi=iMPj
15 14 eqcomi iMPj=PjtposMi
16 15 a1i iNjNiMPj=PjtposMi
17 16 mpoeq3ia iN,jNiMPj=iN,jNPjtposMi
18 8 17 eqtri E=iN,jNPjtposMi
19 18 tposmpo tposE=jN,iNPjtposMi
20 1 2 3 4 5 6 7 19 mdetpmtr1 RCRingNFintposMBPGDtposM=ZSP·˙DtposE
21 9 10 12 13 20 syl22anc RCRingNFinMBPGDtposM=ZSP·˙DtposE
22 3 1 2 mdettpos RCRingMBDtposM=DM
23 22 ad2ant2r RCRingNFinMBPGDtposM=DM
24 eqid BaseR=BaseR
25 simp2 RCRingNFinMBPGiNjNiN
26 13 3ad2ant1 RCRingNFinMBPGiNjNPG
27 simp3 RCRingNFinMBPGiNjNjN
28 eqid SymGrpN=SymGrpN
29 28 4 symgfv PGjNPjN
30 26 27 29 syl2anc RCRingNFinMBPGiNjNPjN
31 simp1rl RCRingNFinMBPGiNjNMB
32 1 24 2 25 30 31 matecld RCRingNFinMBPGiNjNiMPjBaseR
33 1 24 2 10 9 32 matbas2d RCRingNFinMBPGiN,jNiMPjB
34 8 33 eqeltrid RCRingNFinMBPGEB
35 3 1 2 mdettpos RCRingEBDtposE=DE
36 9 34 35 syl2anc RCRingNFinMBPGDtposE=DE
37 36 oveq2d RCRingNFinMBPGZSP·˙DtposE=ZSP·˙DE
38 21 23 37 3eqtr3d RCRingNFinMBPGDM=ZSP·˙DE