Metamath Proof Explorer


Theorem metakunt19

Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt19.1 φM
metakunt19.2 φI
metakunt19.3 φIM
metakunt19.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
metakunt19.5 C=x1I1x+M-I
metakunt19.6 D=xIM1x+1-I
Assertion metakunt19 φCFn1I1DFnIM1CDFn1I1IM1MMFnM

Proof

Step Hyp Ref Expression
1 metakunt19.1 φM
2 metakunt19.2 φI
3 metakunt19.3 φIM
4 metakunt19.4 B=x1Mifx=MMifx<Ix+M-Ix+1-I
5 metakunt19.5 C=x1I1x+M-I
6 metakunt19.6 D=xIM1x+1-I
7 elfzelz x1I1x
8 7 adantl φx1I1x
9 1 nnzd φM
10 9 adantr φx1I1M
11 2 nnzd φI
12 11 adantr φx1I1I
13 10 12 zsubcld φx1I1MI
14 8 13 zaddcld φx1I1x+M-I
15 14 5 fmptd φC:1I1
16 15 ffnd φCFn1I1
17 elfzelz xIM1x
18 17 adantl φxIM1x
19 1zzd φxIM11
20 11 adantr φxIM1I
21 19 20 zsubcld φxIM11I
22 18 21 zaddcld φxIM1x+1-I
23 22 6 fmptd φD:IM1
24 23 ffnd φDFnIM1
25 1 2 3 metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=
26 25 simpld φ1I1IM1=1I1M=IM1M=
27 26 simp1d φ1I1IM1=
28 16 24 27 fnund φCDFn1I1IM1
29 16 24 28 3jca φCFn1I1DFnIM1CDFn1I1IM1
30 fnsng MMMMFnM
31 1 1 30 syl2anc φMMFnM
32 29 31 jca φCFn1I1DFnIM1CDFn1I1IM1MMFnM