Metamath Proof Explorer


Theorem metakunt19

Description: Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt19.1 φ M
metakunt19.2 φ I
metakunt19.3 φ I M
metakunt19.4 B = x 1 M if x = M M if x < I x + M - I x + 1 - I
metakunt19.5 C = x 1 I 1 x + M - I
metakunt19.6 D = x I M 1 x + 1 - I
Assertion metakunt19 φ C Fn 1 I 1 D Fn I M 1 C D Fn 1 I 1 I M 1 M M Fn M

Proof

Step Hyp Ref Expression
1 metakunt19.1 φ M
2 metakunt19.2 φ I
3 metakunt19.3 φ I M
4 metakunt19.4 B = x 1 M if x = M M if x < I x + M - I x + 1 - I
5 metakunt19.5 C = x 1 I 1 x + M - I
6 metakunt19.6 D = x I M 1 x + 1 - I
7 elfzelz x 1 I 1 x
8 7 adantl φ x 1 I 1 x
9 1 nnzd φ M
10 9 adantr φ x 1 I 1 M
11 2 nnzd φ I
12 11 adantr φ x 1 I 1 I
13 10 12 zsubcld φ x 1 I 1 M I
14 8 13 zaddcld φ x 1 I 1 x + M - I
15 14 5 fmptd φ C : 1 I 1
16 15 ffnd φ C Fn 1 I 1
17 elfzelz x I M 1 x
18 17 adantl φ x I M 1 x
19 1zzd φ x I M 1 1
20 11 adantr φ x I M 1 I
21 19 20 zsubcld φ x I M 1 1 I
22 18 21 zaddcld φ x I M 1 x + 1 - I
23 22 6 fmptd φ D : I M 1
24 23 ffnd φ D Fn I M 1
25 1 2 3 metakunt18 φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M = M - I + 1 M 1 1 M I = M - I + 1 M 1 M = 1 M I M =
26 25 simpld φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M =
27 26 simp1d φ 1 I 1 I M 1 =
28 16 24 27 fnund φ C D Fn 1 I 1 I M 1
29 16 24 28 3jca φ C Fn 1 I 1 D Fn I M 1 C D Fn 1 I 1 I M 1
30 fnsng M M M M Fn M
31 1 1 30 syl2anc φ M M Fn M
32 29 31 jca φ C Fn 1 I 1 D Fn I M 1 C D Fn 1 I 1 I M 1 M M Fn M