Metamath Proof Explorer


Theorem metakunt27

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024)

Ref Expression
Hypotheses metakunt27.1 φM
metakunt27.2 φI
metakunt27.3 φIM
metakunt27.4 φX1M
metakunt27.5 A=x1Mifx=IMifx<Ixx1
metakunt27.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt27.7 φ¬X=I
metakunt27.8 φX<I
Assertion metakunt27 φBAX=X+M-I

Proof

Step Hyp Ref Expression
1 metakunt27.1 φM
2 metakunt27.2 φI
3 metakunt27.3 φIM
4 metakunt27.4 φX1M
5 metakunt27.5 A=x1Mifx=IMifx<Ixx1
6 metakunt27.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt27.7 φ¬X=I
8 metakunt27.8 φX<I
9 5 a1i φA=x1Mifx=IMifx<Ixx1
10 7 adantr φx=X¬X=I
11 simpr φx=Xx=X
12 11 eqeq1d φx=Xx=IX=I
13 12 notbid φx=X¬x=I¬X=I
14 10 13 mpbird φx=X¬x=I
15 14 iffalsed φx=Xifx=IMifx<Ixx1=ifx<Ixx1
16 8 adantr φx=XX<I
17 11 breq1d φx=Xx<IX<I
18 16 17 mpbird φx=Xx<I
19 18 iftrued φx=Xifx<Ixx1=x
20 19 11 eqtrd φx=Xifx<Ixx1=X
21 15 20 eqtrd φx=Xifx=IMifx<Ixx1=X
22 9 21 4 4 fvmptd φAX=X
23 22 fveq2d φBAX=BX
24 6 a1i φB=z1Mifz=MMifz<Iz+M-Iz+1-I
25 elfznn X1MX
26 4 25 syl φX
27 26 nnred φX
28 2 nnred φI
29 1 nnred φM
30 27 28 29 8 3 ltletrd φX<M
31 27 30 ltned φXM
32 31 neneqd φ¬X=M
33 32 adantr φz=X¬X=M
34 simpr φz=Xz=X
35 34 eqeq1d φz=Xz=MX=M
36 35 notbid φz=X¬z=M¬X=M
37 33 36 mpbird φz=X¬z=M
38 37 iffalsed φz=Xifz=MMifz<Iz+M-Iz+1-I=ifz<Iz+M-Iz+1-I
39 8 adantr φz=XX<I
40 34 breq1d φz=Xz<IX<I
41 39 40 mpbird φz=Xz<I
42 41 iftrued φz=Xifz<Iz+M-Iz+1-I=z+M-I
43 34 oveq1d φz=Xz+M-I=X+M-I
44 42 43 eqtrd φz=Xifz<Iz+M-Iz+1-I=X+M-I
45 38 44 eqtrd φz=Xifz=MMifz<Iz+M-Iz+1-I=X+M-I
46 4 elfzelzd φX
47 1 nnzd φM
48 2 nnzd φI
49 47 48 zsubcld φMI
50 46 49 zaddcld φX+M-I
51 24 45 4 50 fvmptd φBX=X+M-I
52 23 51 eqtrd φBAX=X+M-I