Description: The function F which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metdscn.f | |
|
metdscn.j | |
||
metdscn.c | |
||
metdscn.k | |
||
Assertion | metdscn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscn.f | |
|
2 | metdscn.j | |
|
3 | metdscn.c | |
|
4 | metdscn.k | |
|
5 | 1 | metdsf | |
6 | iccssxr | |
|
7 | fss | |
|
8 | 5 6 7 | sylancl | |
9 | simprr | |
|
10 | 8 | ad2antrr | |
11 | simplrl | |
|
12 | 10 11 | ffvelcdmd | |
13 | simprl | |
|
14 | 10 13 | ffvelcdmd | |
15 | 3 | xrsdsval | |
16 | 12 14 15 | syl2anc | |
17 | simplll | |
|
18 | simpllr | |
|
19 | simplrr | |
|
20 | xmetsym | |
|
21 | 17 13 11 20 | syl3anc | |
22 | simprr | |
|
23 | 21 22 | eqbrtrd | |
24 | 1 2 3 4 17 18 13 11 19 23 | metdscnlem | |
25 | 1 2 3 4 17 18 11 13 19 22 | metdscnlem | |
26 | breq1 | |
|
27 | breq1 | |
|
28 | 26 27 | ifboth | |
29 | 24 25 28 | syl2anc | |
30 | 16 29 | eqbrtrd | |
31 | 30 | expr | |
32 | 31 | ralrimiva | |
33 | breq2 | |
|
34 | 33 | rspceaimv | |
35 | 9 32 34 | syl2anc | |
36 | 35 | ralrimivva | |
37 | simpl | |
|
38 | 3 | xrsxmet | |
39 | 2 4 | metcn | |
40 | 37 38 39 | sylancl | |
41 | 8 36 40 | mpbir2and | |