Metamath Proof Explorer


Theorem metdscn

Description: The function F which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
metdscn.c C=dist𝑠*
metdscn.k K=MetOpenC
Assertion metdscn D∞MetXSXFJCnK

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 metdscn.c C=dist𝑠*
4 metdscn.k K=MetOpenC
5 1 metdsf D∞MetXSXF:X0+∞
6 iccssxr 0+∞*
7 fss F:X0+∞0+∞*F:X*
8 5 6 7 sylancl D∞MetXSXF:X*
9 simprr D∞MetXSXzXr+r+
10 8 ad2antrr D∞MetXSXzXr+wXzDw<rF:X*
11 simplrl D∞MetXSXzXr+wXzDw<rzX
12 10 11 ffvelcdmd D∞MetXSXzXr+wXzDw<rFz*
13 simprl D∞MetXSXzXr+wXzDw<rwX
14 10 13 ffvelcdmd D∞MetXSXzXr+wXzDw<rFw*
15 3 xrsdsval Fz*Fw*FzCFw=ifFzFwFw+𝑒FzFz+𝑒Fw
16 12 14 15 syl2anc D∞MetXSXzXr+wXzDw<rFzCFw=ifFzFwFw+𝑒FzFz+𝑒Fw
17 simplll D∞MetXSXzXr+wXzDw<rD∞MetX
18 simpllr D∞MetXSXzXr+wXzDw<rSX
19 simplrr D∞MetXSXzXr+wXzDw<rr+
20 xmetsym D∞MetXwXzXwDz=zDw
21 17 13 11 20 syl3anc D∞MetXSXzXr+wXzDw<rwDz=zDw
22 simprr D∞MetXSXzXr+wXzDw<rzDw<r
23 21 22 eqbrtrd D∞MetXSXzXr+wXzDw<rwDz<r
24 1 2 3 4 17 18 13 11 19 23 metdscnlem D∞MetXSXzXr+wXzDw<rFw+𝑒Fz<r
25 1 2 3 4 17 18 11 13 19 22 metdscnlem D∞MetXSXzXr+wXzDw<rFz+𝑒Fw<r
26 breq1 Fw+𝑒Fz=ifFzFwFw+𝑒FzFz+𝑒FwFw+𝑒Fz<rifFzFwFw+𝑒FzFz+𝑒Fw<r
27 breq1 Fz+𝑒Fw=ifFzFwFw+𝑒FzFz+𝑒FwFz+𝑒Fw<rifFzFwFw+𝑒FzFz+𝑒Fw<r
28 26 27 ifboth Fw+𝑒Fz<rFz+𝑒Fw<rifFzFwFw+𝑒FzFz+𝑒Fw<r
29 24 25 28 syl2anc D∞MetXSXzXr+wXzDw<rifFzFwFw+𝑒FzFz+𝑒Fw<r
30 16 29 eqbrtrd D∞MetXSXzXr+wXzDw<rFzCFw<r
31 30 expr D∞MetXSXzXr+wXzDw<rFzCFw<r
32 31 ralrimiva D∞MetXSXzXr+wXzDw<rFzCFw<r
33 breq2 s=rzDw<szDw<r
34 33 rspceaimv r+wXzDw<rFzCFw<rs+wXzDw<sFzCFw<r
35 9 32 34 syl2anc D∞MetXSXzXr+s+wXzDw<sFzCFw<r
36 35 ralrimivva D∞MetXSXzXr+s+wXzDw<sFzCFw<r
37 simpl D∞MetXSXD∞MetX
38 3 xrsxmet C∞Met*
39 2 4 metcn D∞MetXC∞Met*FJCnKF:X*zXr+s+wXzDw<sFzCFw<r
40 37 38 39 sylancl D∞MetXSXFJCnKF:X*zXr+s+wXzDw<sFzCFw<r
41 8 36 40 mpbir2and D∞MetXSXFJCnK