Metamath Proof Explorer


Theorem mgmpropd

Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypotheses mgmpropd.k φB=BaseK
mgmpropd.l φB=BaseL
mgmpropd.b φB
mgmpropd.p φxByBx+Ky=x+Ly
Assertion mgmpropd φKMgmLMgm

Proof

Step Hyp Ref Expression
1 mgmpropd.k φB=BaseK
2 mgmpropd.l φB=BaseL
3 mgmpropd.b φB
4 mgmpropd.p φxByBx+Ky=x+Ly
5 simpl φxBaseKyBaseKφ
6 1 eqcomd φBaseK=B
7 6 eleq2d φxBaseKxB
8 7 biimpcd xBaseKφxB
9 8 adantr xBaseKyBaseKφxB
10 9 impcom φxBaseKyBaseKxB
11 6 eleq2d φyBaseKyB
12 11 biimpd φyBaseKyB
13 12 adantld φxBaseKyBaseKyB
14 13 imp φxBaseKyBaseKyB
15 5 10 14 4 syl12anc φxBaseKyBaseKx+Ky=x+Ly
16 15 eleq1d φxBaseKyBaseKx+KyBaseKx+LyBaseK
17 16 2ralbidva φxBaseKyBaseKx+KyBaseKxBaseKyBaseKx+LyBaseK
18 1 2 eqtr3d φBaseK=BaseL
19 18 eleq2d φx+LyBaseKx+LyBaseL
20 18 19 raleqbidv φyBaseKx+LyBaseKyBaseLx+LyBaseL
21 18 20 raleqbidv φxBaseKyBaseKx+LyBaseKxBaseLyBaseLx+LyBaseL
22 17 21 bitrd φxBaseKyBaseKx+KyBaseKxBaseLyBaseLx+LyBaseL
23 n0 BaaB
24 1 eleq2d φaBaBaseK
25 eqid BaseK=BaseK
26 eqid +K=+K
27 25 26 ismgmn0 aBaseKKMgmxBaseKyBaseKx+KyBaseK
28 24 27 syl6bi φaBKMgmxBaseKyBaseKx+KyBaseK
29 28 exlimdv φaaBKMgmxBaseKyBaseKx+KyBaseK
30 23 29 biimtrid φBKMgmxBaseKyBaseKx+KyBaseK
31 3 30 mpd φKMgmxBaseKyBaseKx+KyBaseK
32 2 eleq2d φaBaBaseL
33 eqid BaseL=BaseL
34 eqid +L=+L
35 33 34 ismgmn0 aBaseLLMgmxBaseLyBaseLx+LyBaseL
36 32 35 syl6bi φaBLMgmxBaseLyBaseLx+LyBaseL
37 36 exlimdv φaaBLMgmxBaseLyBaseLx+LyBaseL
38 23 37 biimtrid φBLMgmxBaseLyBaseLx+LyBaseL
39 3 38 mpd φLMgmxBaseLyBaseLx+LyBaseL
40 22 31 39 3bitr4d φKMgmLMgm