Step |
Hyp |
Ref |
Expression |
1 |
|
mgmpropd.k |
|
2 |
|
mgmpropd.l |
|
3 |
|
mgmpropd.b |
|
4 |
|
mgmpropd.p |
|
5 |
|
simpl |
|
6 |
1
|
eqcomd |
|
7 |
6
|
eleq2d |
|
8 |
7
|
biimpcd |
|
9 |
8
|
adantr |
|
10 |
9
|
impcom |
|
11 |
6
|
eleq2d |
|
12 |
11
|
biimpd |
|
13 |
12
|
adantld |
|
14 |
13
|
imp |
|
15 |
5 10 14 4
|
syl12anc |
|
16 |
15
|
eleq1d |
|
17 |
16
|
2ralbidva |
|
18 |
1 2
|
eqtr3d |
|
19 |
18
|
eleq2d |
|
20 |
18 19
|
raleqbidv |
|
21 |
18 20
|
raleqbidv |
|
22 |
17 21
|
bitrd |
|
23 |
|
n0 |
|
24 |
1
|
eleq2d |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
25 26
|
ismgmn0 |
|
28 |
24 27
|
syl6bi |
|
29 |
28
|
exlimdv |
|
30 |
23 29
|
syl5bi |
|
31 |
3 30
|
mpd |
|
32 |
2
|
eleq2d |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33 34
|
ismgmn0 |
|
36 |
32 35
|
syl6bi |
|
37 |
36
|
exlimdv |
|
38 |
23 37
|
syl5bi |
|
39 |
3 38
|
mpd |
|
40 |
22 31 39
|
3bitr4d |
|