Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mgmpropd.k | |
|
mgmpropd.l | |
||
mgmpropd.b | |
||
mgmpropd.p | |
||
Assertion | mgmpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgmpropd.k | |
|
2 | mgmpropd.l | |
|
3 | mgmpropd.b | |
|
4 | mgmpropd.p | |
|
5 | simpl | |
|
6 | 1 | eqcomd | |
7 | 6 | eleq2d | |
8 | 7 | biimpcd | |
9 | 8 | adantr | |
10 | 9 | impcom | |
11 | 6 | eleq2d | |
12 | 11 | biimpd | |
13 | 12 | adantld | |
14 | 13 | imp | |
15 | 5 10 14 4 | syl12anc | |
16 | 15 | eleq1d | |
17 | 16 | 2ralbidva | |
18 | 1 2 | eqtr3d | |
19 | 18 | eleq2d | |
20 | 18 19 | raleqbidv | |
21 | 18 20 | raleqbidv | |
22 | 17 21 | bitrd | |
23 | n0 | |
|
24 | 1 | eleq2d | |
25 | eqid | |
|
26 | eqid | |
|
27 | 25 26 | ismgmn0 | |
28 | 24 27 | syl6bi | |
29 | 28 | exlimdv | |
30 | 23 29 | biimtrid | |
31 | 3 30 | mpd | |
32 | 2 | eleq2d | |
33 | eqid | |
|
34 | eqid | |
|
35 | 33 34 | ismgmn0 | |
36 | 32 35 | syl6bi | |
37 | 36 | exlimdv | |
38 | 23 37 | biimtrid | |
39 | 3 38 | mpd | |
40 | 22 31 39 | 3bitr4d | |