Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmmulg.b | |
|
mhmmulg.s | |
||
mhmmulg.t | |
||
Assertion | mhmmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmmulg.b | |
|
2 | mhmmulg.s | |
|
3 | mhmmulg.t | |
|
4 | fvoveq1 | |
|
5 | oveq1 | |
|
6 | 4 5 | eqeq12d | |
7 | 6 | imbi2d | |
8 | fvoveq1 | |
|
9 | oveq1 | |
|
10 | 8 9 | eqeq12d | |
11 | 10 | imbi2d | |
12 | fvoveq1 | |
|
13 | oveq1 | |
|
14 | 12 13 | eqeq12d | |
15 | 14 | imbi2d | |
16 | fvoveq1 | |
|
17 | oveq1 | |
|
18 | 16 17 | eqeq12d | |
19 | 18 | imbi2d | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 | mhm0 | |
23 | 22 | adantr | |
24 | 1 20 2 | mulg0 | |
25 | 24 | adantl | |
26 | 25 | fveq2d | |
27 | eqid | |
|
28 | 1 27 | mhmf | |
29 | 28 | ffvelcdmda | |
30 | 27 21 3 | mulg0 | |
31 | 29 30 | syl | |
32 | 23 26 31 | 3eqtr4d | |
33 | oveq1 | |
|
34 | mhmrcl1 | |
|
35 | 34 | ad2antrr | |
36 | simpr | |
|
37 | simplr | |
|
38 | eqid | |
|
39 | 1 2 38 | mulgnn0p1 | |
40 | 35 36 37 39 | syl3anc | |
41 | 40 | fveq2d | |
42 | simpll | |
|
43 | 34 | ad2antrr | |
44 | simplr | |
|
45 | simpr | |
|
46 | 1 2 43 44 45 | mulgnn0cld | |
47 | 46 | an32s | |
48 | eqid | |
|
49 | 1 38 48 | mhmlin | |
50 | 42 47 37 49 | syl3anc | |
51 | 41 50 | eqtrd | |
52 | mhmrcl2 | |
|
53 | 52 | ad2antrr | |
54 | 29 | adantr | |
55 | 27 3 48 | mulgnn0p1 | |
56 | 53 36 54 55 | syl3anc | |
57 | 51 56 | eqeq12d | |
58 | 33 57 | imbitrrid | |
59 | 58 | expcom | |
60 | 59 | a2d | |
61 | 7 11 15 19 32 60 | nn0ind | |
62 | 61 | 3impib | |
63 | 62 | 3com12 | |