Metamath Proof Explorer


Theorem mhmmulg

Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses mhmmulg.b B=BaseG
mhmmulg.s ·˙=G
mhmmulg.t ×˙=H
Assertion mhmmulg FGMndHomHN0XBFN·˙X=N×˙FX

Proof

Step Hyp Ref Expression
1 mhmmulg.b B=BaseG
2 mhmmulg.s ·˙=G
3 mhmmulg.t ×˙=H
4 fvoveq1 n=0Fn·˙X=F0·˙X
5 oveq1 n=0n×˙FX=0×˙FX
6 4 5 eqeq12d n=0Fn·˙X=n×˙FXF0·˙X=0×˙FX
7 6 imbi2d n=0FGMndHomHXBFn·˙X=n×˙FXFGMndHomHXBF0·˙X=0×˙FX
8 fvoveq1 n=mFn·˙X=Fm·˙X
9 oveq1 n=mn×˙FX=m×˙FX
10 8 9 eqeq12d n=mFn·˙X=n×˙FXFm·˙X=m×˙FX
11 10 imbi2d n=mFGMndHomHXBFn·˙X=n×˙FXFGMndHomHXBFm·˙X=m×˙FX
12 fvoveq1 n=m+1Fn·˙X=Fm+1·˙X
13 oveq1 n=m+1n×˙FX=m+1×˙FX
14 12 13 eqeq12d n=m+1Fn·˙X=n×˙FXFm+1·˙X=m+1×˙FX
15 14 imbi2d n=m+1FGMndHomHXBFn·˙X=n×˙FXFGMndHomHXBFm+1·˙X=m+1×˙FX
16 fvoveq1 n=NFn·˙X=FN·˙X
17 oveq1 n=Nn×˙FX=N×˙FX
18 16 17 eqeq12d n=NFn·˙X=n×˙FXFN·˙X=N×˙FX
19 18 imbi2d n=NFGMndHomHXBFn·˙X=n×˙FXFGMndHomHXBFN·˙X=N×˙FX
20 eqid 0G=0G
21 eqid 0H=0H
22 20 21 mhm0 FGMndHomHF0G=0H
23 22 adantr FGMndHomHXBF0G=0H
24 1 20 2 mulg0 XB0·˙X=0G
25 24 adantl FGMndHomHXB0·˙X=0G
26 25 fveq2d FGMndHomHXBF0·˙X=F0G
27 eqid BaseH=BaseH
28 1 27 mhmf FGMndHomHF:BBaseH
29 28 ffvelcdmda FGMndHomHXBFXBaseH
30 27 21 3 mulg0 FXBaseH0×˙FX=0H
31 29 30 syl FGMndHomHXB0×˙FX=0H
32 23 26 31 3eqtr4d FGMndHomHXBF0·˙X=0×˙FX
33 oveq1 Fm·˙X=m×˙FXFm·˙X+HFX=m×˙FX+HFX
34 mhmrcl1 FGMndHomHGMnd
35 34 ad2antrr FGMndHomHXBm0GMnd
36 simpr FGMndHomHXBm0m0
37 simplr FGMndHomHXBm0XB
38 eqid +G=+G
39 1 2 38 mulgnn0p1 GMndm0XBm+1·˙X=m·˙X+GX
40 35 36 37 39 syl3anc FGMndHomHXBm0m+1·˙X=m·˙X+GX
41 40 fveq2d FGMndHomHXBm0Fm+1·˙X=Fm·˙X+GX
42 simpll FGMndHomHXBm0FGMndHomH
43 34 ad2antrr FGMndHomHm0XBGMnd
44 simplr FGMndHomHm0XBm0
45 simpr FGMndHomHm0XBXB
46 1 2 43 44 45 mulgnn0cld FGMndHomHm0XBm·˙XB
47 46 an32s FGMndHomHXBm0m·˙XB
48 eqid +H=+H
49 1 38 48 mhmlin FGMndHomHm·˙XBXBFm·˙X+GX=Fm·˙X+HFX
50 42 47 37 49 syl3anc FGMndHomHXBm0Fm·˙X+GX=Fm·˙X+HFX
51 41 50 eqtrd FGMndHomHXBm0Fm+1·˙X=Fm·˙X+HFX
52 mhmrcl2 FGMndHomHHMnd
53 52 ad2antrr FGMndHomHXBm0HMnd
54 29 adantr FGMndHomHXBm0FXBaseH
55 27 3 48 mulgnn0p1 HMndm0FXBaseHm+1×˙FX=m×˙FX+HFX
56 53 36 54 55 syl3anc FGMndHomHXBm0m+1×˙FX=m×˙FX+HFX
57 51 56 eqeq12d FGMndHomHXBm0Fm+1·˙X=m+1×˙FXFm·˙X+HFX=m×˙FX+HFX
58 33 57 imbitrrid FGMndHomHXBm0Fm·˙X=m×˙FXFm+1·˙X=m+1×˙FX
59 58 expcom m0FGMndHomHXBFm·˙X=m×˙FXFm+1·˙X=m+1×˙FX
60 59 a2d m0FGMndHomHXBFm·˙X=m×˙FXFGMndHomHXBFm+1·˙X=m+1×˙FX
61 7 11 15 19 32 60 nn0ind N0FGMndHomHXBFN·˙X=N×˙FX
62 61 3impib N0FGMndHomHXBFN·˙X=N×˙FX
63 62 3com12 FGMndHomHN0XBFN·˙X=N×˙FX