| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmmulg.b |
|
| 2 |
|
mhmmulg.s |
|
| 3 |
|
mhmmulg.t |
|
| 4 |
|
fvoveq1 |
|
| 5 |
|
oveq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
|
fvoveq1 |
|
| 9 |
|
oveq1 |
|
| 10 |
8 9
|
eqeq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
fvoveq1 |
|
| 13 |
|
oveq1 |
|
| 14 |
12 13
|
eqeq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
fvoveq1 |
|
| 17 |
|
oveq1 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
mhm0 |
|
| 23 |
22
|
adantr |
|
| 24 |
1 20 2
|
mulg0 |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
eqid |
|
| 28 |
1 27
|
mhmf |
|
| 29 |
28
|
ffvelcdmda |
|
| 30 |
27 21 3
|
mulg0 |
|
| 31 |
29 30
|
syl |
|
| 32 |
23 26 31
|
3eqtr4d |
|
| 33 |
|
oveq1 |
|
| 34 |
|
mhmrcl1 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
simpr |
|
| 37 |
|
simplr |
|
| 38 |
|
eqid |
|
| 39 |
1 2 38
|
mulgnn0p1 |
|
| 40 |
35 36 37 39
|
syl3anc |
|
| 41 |
40
|
fveq2d |
|
| 42 |
|
simpll |
|
| 43 |
34
|
ad2antrr |
|
| 44 |
|
simplr |
|
| 45 |
|
simpr |
|
| 46 |
1 2 43 44 45
|
mulgnn0cld |
|
| 47 |
46
|
an32s |
|
| 48 |
|
eqid |
|
| 49 |
1 38 48
|
mhmlin |
|
| 50 |
42 47 37 49
|
syl3anc |
|
| 51 |
41 50
|
eqtrd |
|
| 52 |
|
mhmrcl2 |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
29
|
adantr |
|
| 55 |
27 3 48
|
mulgnn0p1 |
|
| 56 |
53 36 54 55
|
syl3anc |
|
| 57 |
51 56
|
eqeq12d |
|
| 58 |
33 57
|
imbitrrid |
|
| 59 |
58
|
expcom |
|
| 60 |
59
|
a2d |
|
| 61 |
7 11 15 19 32 60
|
nn0ind |
|
| 62 |
61
|
3impib |
|
| 63 |
62
|
3com12 |
|