| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn |
|
| 2 |
1
|
a1i |
|
| 3 |
|
3nn0 |
|
| 4 |
3
|
a1i |
|
| 5 |
|
3lt4 |
|
| 6 |
4 5
|
jctir |
|
| 7 |
|
modremain |
|
| 8 |
2 6 7
|
mpd3an23 |
|
| 9 |
|
2cnd |
|
| 10 |
|
simpr |
|
| 11 |
|
4z |
|
| 12 |
11
|
a1i |
|
| 13 |
10 12
|
zmulcld |
|
| 14 |
13
|
zcnd |
|
| 15 |
|
3cn |
|
| 16 |
15
|
a1i |
|
| 17 |
9 14 16
|
adddid |
|
| 18 |
10
|
zcnd |
|
| 19 |
|
4cn |
|
| 20 |
19
|
a1i |
|
| 21 |
9 18 20
|
mul12d |
|
| 22 |
|
2cn |
|
| 23 |
|
4t2e8 |
|
| 24 |
19 22 23
|
mulcomli |
|
| 25 |
24
|
oveq2i |
|
| 26 |
21 25
|
eqtrdi |
|
| 27 |
|
3t2e6 |
|
| 28 |
15 22 27
|
mulcomli |
|
| 29 |
28
|
a1i |
|
| 30 |
26 29
|
oveq12d |
|
| 31 |
17 30
|
eqtrd |
|
| 32 |
31
|
oveq1d |
|
| 33 |
|
id |
|
| 34 |
|
8nn |
|
| 35 |
34
|
nnzi |
|
| 36 |
35
|
a1i |
|
| 37 |
33 36
|
zmulcld |
|
| 38 |
37
|
zcnd |
|
| 39 |
|
6cn |
|
| 40 |
39
|
a1i |
|
| 41 |
|
1cnd |
|
| 42 |
38 40 41
|
addassd |
|
| 43 |
|
6p1e7 |
|
| 44 |
43
|
a1i |
|
| 45 |
44
|
oveq2d |
|
| 46 |
42 45
|
eqtrd |
|
| 47 |
46
|
adantl |
|
| 48 |
32 47
|
eqtrd |
|
| 49 |
48
|
oveq1d |
|
| 50 |
|
nnrp |
|
| 51 |
34 50
|
mp1i |
|
| 52 |
|
0xr |
|
| 53 |
52
|
a1i |
|
| 54 |
|
8re |
|
| 55 |
54
|
rexri |
|
| 56 |
55
|
a1i |
|
| 57 |
|
7re |
|
| 58 |
57
|
rexri |
|
| 59 |
58
|
a1i |
|
| 60 |
|
0re |
|
| 61 |
|
7pos |
|
| 62 |
60 57 61
|
ltleii |
|
| 63 |
62
|
a1i |
|
| 64 |
|
7lt8 |
|
| 65 |
64
|
a1i |
|
| 66 |
53 56 59 63 65
|
elicod |
|
| 67 |
|
muladdmodid |
|
| 68 |
51 66 67
|
mpd3an23 |
|
| 69 |
68
|
adantl |
|
| 70 |
49 69
|
eqtrd |
|
| 71 |
|
oveq2 |
|
| 72 |
71
|
oveq1d |
|
| 73 |
72
|
oveq1d |
|
| 74 |
73
|
eqeq1d |
|
| 75 |
70 74
|
syl5ibcom |
|
| 76 |
75
|
rexlimdva |
|
| 77 |
8 76
|
sylbid |
|
| 78 |
77
|
imp |
|