Metamath Proof Explorer


Theorem modltm1p1mod

Description: If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018)

Ref Expression
Assertion modltm1p1mod AM+AmodM<M1A+1modM=AmodM+1

Proof

Step Hyp Ref Expression
1 simpl AM+A
2 1red AM+1
3 simpr AM+M+
4 1 2 3 3jca AM+A1M+
5 4 3adant3 AM+AmodM<M1A1M+
6 modaddmod A1M+AmodM+1modM=A+1modM
7 5 6 syl AM+AmodM<M1AmodM+1modM=A+1modM
8 modcl AM+AmodM
9 peano2re AmodMAmodM+1
10 8 9 syl AM+AmodM+1
11 10 3 jca AM+AmodM+1M+
12 11 3adant3 AM+AmodM<M1AmodM+1M+
13 0red AM+0
14 modge0 AM+0AmodM
15 8 lep1d AM+AmodMAmodM+1
16 13 8 10 14 15 letrd AM+0AmodM+1
17 16 3adant3 AM+AmodM<M10AmodM+1
18 rpre M+M
19 18 adantl AM+M
20 8 2 19 ltaddsubd AM+AmodM+1<MAmodM<M1
21 20 biimp3ar AM+AmodM<M1AmodM+1<M
22 modid AmodM+1M+0AmodM+1AmodM+1<MAmodM+1modM=AmodM+1
23 12 17 21 22 syl12anc AM+AmodM<M1AmodM+1modM=AmodM+1
24 7 23 eqtr3d AM+AmodM<M1A+1modM=AmodM+1