Description: If a real number modulo a positive real number is less than the positive real number decreased by 1, the real number increased by 1 modulo the positive real number equals the real number modulo the positive real number increased by 1. (Contributed by AV, 2-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | modltm1p1mod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1red | |
|
3 | simpr | |
|
4 | 1 2 3 | 3jca | |
5 | 4 | 3adant3 | |
6 | modaddmod | |
|
7 | 5 6 | syl | |
8 | modcl | |
|
9 | peano2re | |
|
10 | 8 9 | syl | |
11 | 10 3 | jca | |
12 | 11 | 3adant3 | |
13 | 0red | |
|
14 | modge0 | |
|
15 | 8 | lep1d | |
16 | 13 8 10 14 15 | letrd | |
17 | 16 | 3adant3 | |
18 | rpre | |
|
19 | 18 | adantl | |
20 | 8 2 19 | ltaddsubd | |
21 | 20 | biimp3ar | |
22 | modid | |
|
23 | 12 17 21 22 | syl12anc | |
24 | 7 23 | eqtr3d | |