Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | modn0mul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | 1 | adantr | |
3 | nnre | |
|
4 | 3 | adantl | |
5 | nnne0 | |
|
6 | 5 | adantl | |
7 | 2 4 6 | redivcld | |
8 | 7 | flcld | |
9 | 8 | adantr | |
10 | zmodfzo | |
|
11 | 10 | anim1i | |
12 | fzo1fzo0n0 | |
|
13 | 11 12 | sylibr | |
14 | nnrp | |
|
15 | 1 14 | anim12i | |
16 | 15 | adantr | |
17 | flpmodeq | |
|
18 | 16 17 | syl | |
19 | 18 | eqcomd | |
20 | oveq1 | |
|
21 | 20 | oveq1d | |
22 | 21 | eqeq2d | |
23 | oveq2 | |
|
24 | 23 | eqeq2d | |
25 | 22 24 | rspc2ev | |
26 | 9 13 19 25 | syl3anc | |
27 | 26 | ex | |