Description: The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | modremain | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom | |
|
2 | divalgmodcl | |
|
3 | 2 | 3adant3r | |
4 | ibar | |
|
5 | 4 | adantl | |
6 | 5 | 3ad2ant3 | |
7 | nnz | |
|
8 | 7 | 3ad2ant2 | |
9 | simp1 | |
|
10 | nn0z | |
|
11 | 10 | adantr | |
12 | 11 | 3ad2ant3 | |
13 | 9 12 | zsubcld | |
14 | divides | |
|
15 | 8 13 14 | syl2anc | |
16 | eqcom | |
|
17 | zcn | |
|
18 | 17 | 3ad2ant1 | |
19 | 18 | adantr | |
20 | nn0cn | |
|
21 | 20 | adantr | |
22 | 21 | 3ad2ant3 | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | 8 | adantr | |
26 | 24 25 | zmulcld | |
27 | 26 | zcnd | |
28 | 19 23 27 | subadd2d | |
29 | 16 28 | bitrid | |
30 | 29 | rexbidva | |
31 | 15 30 | bitrd | |
32 | 3 6 31 | 3bitr2d | |
33 | 1 32 | bitrid | |