Description: Lemma for mply1topmatcl . (Contributed by AV, 6-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mply1topmat.a | |
|
mply1topmat.q | |
||
mply1topmat.l | |
||
mply1topmat.p | |
||
mply1topmat.m | |
||
mply1topmat.e | |
||
mply1topmat.y | |
||
Assertion | mply1topmatcllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mply1topmat.a | |
|
2 | mply1topmat.q | |
|
3 | mply1topmat.l | |
|
4 | mply1topmat.p | |
|
5 | mply1topmat.m | |
|
6 | mply1topmat.e | |
|
7 | mply1topmat.y | |
|
8 | nn0ex | |
|
9 | 8 | a1i | |
10 | 4 | ply1lmod | |
11 | 10 | 3ad2ant2 | |
12 | 11 | 3ad2ant1 | |
13 | simp12 | |
|
14 | 4 | ply1sca | |
15 | 13 14 | syl | |
16 | eqid | |
|
17 | ovexd | |
|
18 | eqid | |
|
19 | 18 16 | mgpbas | |
20 | 4 | ply1ring | |
21 | 18 | ringmgp | |
22 | 20 21 | syl | |
23 | 22 | 3ad2ant2 | |
24 | 23 | 3ad2ant1 | |
25 | 24 | adantr | |
26 | simpr | |
|
27 | 7 4 16 | vr1cl | |
28 | 27 | 3ad2ant2 | |
29 | 28 | 3ad2ant1 | |
30 | 29 | adantr | |
31 | 19 6 25 26 30 | mulgnn0cld | |
32 | eqid | |
|
33 | eqid | |
|
34 | 1 2 3 | mptcoe1matfsupp | |
35 | 9 12 15 16 17 31 32 33 5 34 | mptscmfsupp0 | |