Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mptelixpg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | nfcv | |
|
3 | nfcsb1v | |
|
4 | csbeq1a | |
|
5 | 2 3 4 | cbvixp | |
6 | 5 | eleq2i | |
7 | elixp2 | |
|
8 | 3anass | |
|
9 | 6 7 8 | 3bitri | |
10 | eqid | |
|
11 | 10 | fnmpt | |
12 | 10 | fvmpt2 | |
13 | simpr | |
|
14 | 12 13 | eqeltrd | |
15 | 14 | ralimiaa | |
16 | 11 15 | jca | |
17 | dffn2 | |
|
18 | 10 | fmpt | |
19 | 10 | fvmpt2 | |
20 | 19 | eleq1d | |
21 | 20 | biimpd | |
22 | 21 | ralimiaa | |
23 | ralim | |
|
24 | 22 23 | syl | |
25 | 18 24 | sylbir | |
26 | 17 25 | sylbi | |
27 | 26 | imp | |
28 | 16 27 | impbii | |
29 | nfv | |
|
30 | nffvmpt1 | |
|
31 | 30 3 | nfel | |
32 | fveq2 | |
|
33 | 32 4 | eleq12d | |
34 | 29 31 33 | cbvralw | |
35 | 34 | anbi2i | |
36 | 28 35 | bitri | |
37 | mptexg | |
|
38 | 37 | biantrurd | |
39 | 36 38 | bitr2id | |
40 | 9 39 | bitrid | |
41 | 1 40 | syl | |