| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ianor |
|
| 2 |
|
0re |
|
| 3 |
|
ltnle |
|
| 4 |
2 3
|
mpan |
|
| 5 |
4
|
adantr |
|
| 6 |
|
ltnle |
|
| 7 |
2 6
|
mpan |
|
| 8 |
7
|
adantl |
|
| 9 |
5 8
|
orbi12d |
|
| 10 |
9
|
adantr |
|
| 11 |
|
ltle |
|
| 12 |
2 11
|
mpan |
|
| 13 |
12
|
imp |
|
| 14 |
13
|
ad2ant2rl |
|
| 15 |
|
remulcl |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simprl |
|
| 18 |
|
simpll |
|
| 19 |
|
simprr |
|
| 20 |
|
divge0 |
|
| 21 |
16 17 18 19 20
|
syl22anc |
|
| 22 |
|
recn |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
|
recn |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
gt0ne0 |
|
| 27 |
26
|
ad2ant2rl |
|
| 28 |
23 25 27
|
divcan3d |
|
| 29 |
21 28
|
breqtrd |
|
| 30 |
14 29
|
jca |
|
| 31 |
30
|
expr |
|
| 32 |
15
|
adantr |
|
| 33 |
|
simprl |
|
| 34 |
|
simplr |
|
| 35 |
|
simprr |
|
| 36 |
|
divge0 |
|
| 37 |
32 33 34 35 36
|
syl22anc |
|
| 38 |
24
|
ad2antrr |
|
| 39 |
22
|
ad2antlr |
|
| 40 |
|
gt0ne0 |
|
| 41 |
40
|
ad2ant2l |
|
| 42 |
38 39 41
|
divcan4d |
|
| 43 |
37 42
|
breqtrd |
|
| 44 |
|
ltle |
|
| 45 |
2 44
|
mpan |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
ad2ant2l |
|
| 48 |
43 47
|
jca |
|
| 49 |
48
|
expr |
|
| 50 |
31 49
|
jaod |
|
| 51 |
10 50
|
sylbird |
|
| 52 |
1 51
|
biimtrid |
|
| 53 |
52
|
orrd |
|
| 54 |
53
|
ex |
|
| 55 |
|
le0neg1 |
|
| 56 |
|
le0neg1 |
|
| 57 |
55 56
|
bi2anan9 |
|
| 58 |
|
renegcl |
|
| 59 |
|
renegcl |
|
| 60 |
|
mulge0 |
|
| 61 |
60
|
an4s |
|
| 62 |
61
|
ex |
|
| 63 |
58 59 62
|
syl2an |
|
| 64 |
|
mul2neg |
|
| 65 |
24 22 64
|
syl2an |
|
| 66 |
65
|
breq2d |
|
| 67 |
63 66
|
sylibd |
|
| 68 |
57 67
|
sylbid |
|
| 69 |
|
mulge0 |
|
| 70 |
69
|
an4s |
|
| 71 |
70
|
ex |
|
| 72 |
68 71
|
jaod |
|
| 73 |
54 72
|
impbid |
|