Description: Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mulsrpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi | |
|
2 | enrex | |
|
3 | 2 | ecelqsi | |
4 | 1 3 | syl | |
5 | opelxpi | |
|
6 | 2 | ecelqsi | |
7 | 5 6 | syl | |
8 | 4 7 | anim12i | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | pm3.2i | |
12 | eqid | |
|
13 | opeq12 | |
|
14 | 13 | eceq1d | |
15 | 14 | eqeq2d | |
16 | 15 | anbi1d | |
17 | simpl | |
|
18 | 17 | oveq1d | |
19 | simpr | |
|
20 | 19 | oveq1d | |
21 | 18 20 | oveq12d | |
22 | 17 | oveq1d | |
23 | 19 | oveq1d | |
24 | 22 23 | oveq12d | |
25 | 21 24 | opeq12d | |
26 | 25 | eceq1d | |
27 | 26 | eqeq2d | |
28 | 16 27 | anbi12d | |
29 | 28 | spc2egv | |
30 | opeq12 | |
|
31 | 30 | eceq1d | |
32 | 31 | eqeq2d | |
33 | 32 | anbi2d | |
34 | simpl | |
|
35 | 34 | oveq2d | |
36 | simpr | |
|
37 | 36 | oveq2d | |
38 | 35 37 | oveq12d | |
39 | 36 | oveq2d | |
40 | 34 | oveq2d | |
41 | 39 40 | oveq12d | |
42 | 38 41 | opeq12d | |
43 | 42 | eceq1d | |
44 | 43 | eqeq2d | |
45 | 33 44 | anbi12d | |
46 | 45 | spc2egv | |
47 | 46 | 2eximdv | |
48 | 29 47 | sylan9 | |
49 | 11 12 48 | mp2ani | |
50 | ecexg | |
|
51 | 2 50 | ax-mp | |
52 | simp1 | |
|
53 | 52 | eqeq1d | |
54 | simp2 | |
|
55 | 54 | eqeq1d | |
56 | 53 55 | anbi12d | |
57 | simp3 | |
|
58 | 57 | eqeq1d | |
59 | 56 58 | anbi12d | |
60 | 59 | 4exbidv | |
61 | mulsrmo | |
|
62 | df-mr | |
|
63 | df-nr | |
|
64 | 63 | eleq2i | |
65 | 63 | eleq2i | |
66 | 64 65 | anbi12i | |
67 | 66 | anbi1i | |
68 | 67 | oprabbii | |
69 | 62 68 | eqtri | |
70 | 60 61 69 | ovig | |
71 | 51 70 | mp3an3 | |
72 | 8 49 71 | sylc | |