Metamath Proof Explorer


Theorem naddcnfcom

Description: Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnfcom XOnS=domωCNFXFSGSF+𝑜fG=G+𝑜fF

Proof

Step Hyp Ref Expression
1 simpr XOnS=domωCNFXS=domωCNFX
2 1 eleq2d XOnS=domωCNFXFSFdomωCNFX
3 eqid domωCNFX=domωCNFX
4 omelon ωOn
5 4 a1i XOnS=domωCNFXωOn
6 simpl XOnS=domωCNFXXOn
7 3 5 6 cantnfs XOnS=domωCNFXFdomωCNFXF:XωfinSuppF
8 2 7 bitrd XOnS=domωCNFXFSF:XωfinSuppF
9 simpl F:XωfinSuppFF:Xω
10 8 9 syl6bi XOnS=domωCNFXFSF:Xω
11 simpl FSGSFS
12 10 11 impel XOnS=domωCNFXFSGSF:Xω
13 12 ffnd XOnS=domωCNFXFSGSFFnX
14 1 eleq2d XOnS=domωCNFXGSGdomωCNFX
15 3 5 6 cantnfs XOnS=domωCNFXGdomωCNFXG:XωfinSuppG
16 14 15 bitrd XOnS=domωCNFXGSG:XωfinSuppG
17 simpl G:XωfinSuppGG:Xω
18 16 17 syl6bi XOnS=domωCNFXGSG:Xω
19 simpr FSGSGS
20 18 19 impel XOnS=domωCNFXFSGSG:Xω
21 20 ffnd XOnS=domωCNFXFSGSGFnX
22 simpll XOnS=domωCNFXFSGSXOn
23 inidm XX=X
24 13 21 22 22 23 offn XOnS=domωCNFXFSGSF+𝑜fGFnX
25 21 13 22 22 23 offn XOnS=domωCNFXFSGSG+𝑜fFFnX
26 12 ffvelcdmda XOnS=domωCNFXFSGSxXFxω
27 20 ffvelcdmda XOnS=domωCNFXFSGSxXGxω
28 nnacom FxωGxωFx+𝑜Gx=Gx+𝑜Fx
29 26 27 28 syl2anc XOnS=domωCNFXFSGSxXFx+𝑜Gx=Gx+𝑜Fx
30 13 adantr XOnS=domωCNFXFSGSxXFFnX
31 21 adantr XOnS=domωCNFXFSGSxXGFnX
32 simplll XOnS=domωCNFXFSGSxXXOn
33 simpr XOnS=domωCNFXFSGSxXxX
34 fnfvof FFnXGFnXXOnxXF+𝑜fGx=Fx+𝑜Gx
35 30 31 32 33 34 syl22anc XOnS=domωCNFXFSGSxXF+𝑜fGx=Fx+𝑜Gx
36 fnfvof GFnXFFnXXOnxXG+𝑜fFx=Gx+𝑜Fx
37 31 30 32 33 36 syl22anc XOnS=domωCNFXFSGSxXG+𝑜fFx=Gx+𝑜Fx
38 29 35 37 3eqtr4d XOnS=domωCNFXFSGSxXF+𝑜fGx=G+𝑜fFx
39 24 25 38 eqfnfvd XOnS=domωCNFXFSGSF+𝑜fG=G+𝑜fF