| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
eleq2d |
|
| 3 |
|
eqid |
|
| 4 |
|
omelon |
|
| 5 |
4
|
a1i |
|
| 6 |
|
simpl |
|
| 7 |
3 5 6
|
cantnfs |
|
| 8 |
2 7
|
bitrd |
|
| 9 |
|
simpl |
|
| 10 |
8 9
|
biimtrdi |
|
| 11 |
|
simpl |
|
| 12 |
10 11
|
impel |
|
| 13 |
12
|
ffnd |
|
| 14 |
1
|
eleq2d |
|
| 15 |
3 5 6
|
cantnfs |
|
| 16 |
14 15
|
bitrd |
|
| 17 |
|
simpl |
|
| 18 |
16 17
|
biimtrdi |
|
| 19 |
|
simpr |
|
| 20 |
18 19
|
impel |
|
| 21 |
20
|
ffnd |
|
| 22 |
|
simpll |
|
| 23 |
|
inidm |
|
| 24 |
13 21 22 22 23
|
offn |
|
| 25 |
21 13 22 22 23
|
offn |
|
| 26 |
12
|
ffvelcdmda |
|
| 27 |
20
|
ffvelcdmda |
|
| 28 |
|
nnacom |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
13
|
adantr |
|
| 31 |
21
|
adantr |
|
| 32 |
|
simplll |
|
| 33 |
|
simpr |
|
| 34 |
|
fnfvof |
|
| 35 |
30 31 32 33 34
|
syl22anc |
|
| 36 |
|
fnfvof |
|
| 37 |
31 30 32 33 36
|
syl22anc |
|
| 38 |
29 35 37
|
3eqtr4d |
|
| 39 |
24 25 38
|
eqfnfvd |
|