Metamath Proof Explorer


Theorem nbupgrres

Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because N , K and M could be connected by one edge, so M is a neighbor of K in the original graph, but not in the restricted graph, because the edge between M and K , also incident with N , was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 8-Nov-2020)

Ref Expression
Hypotheses nbupgrres.v V=VtxG
nbupgrres.e E=EdgG
nbupgrres.f F=eE|Ne
nbupgrres.s S=VNIF
Assertion nbupgrres GUPGraphNVKVNMVNKMGNeighbVtxKMSNeighbVtxK

Proof

Step Hyp Ref Expression
1 nbupgrres.v V=VtxG
2 nbupgrres.e E=EdgG
3 nbupgrres.f F=eE|Ne
4 nbupgrres.s S=VNIF
5 simp1l GUPGraphNVKVNMVNKGUPGraph
6 eldifi KVNKV
7 6 3ad2ant2 GUPGraphNVKVNMVNKKV
8 eldifsn MVNKMVNMK
9 eldifi MVNMV
10 9 anim1i MVNMKMVMK
11 8 10 sylbi MVNKMVMK
12 difpr VNK=VNK
13 11 12 eleq2s MVNKMVMK
14 13 3ad2ant3 GUPGraphNVKVNMVNKMVMK
15 1 2 nbupgrel GUPGraphKVMVMKMGNeighbVtxKMKE
16 5 7 14 15 syl21anc GUPGraphNVKVNMVNKMGNeighbVtxKMKE
17 16 biimpa GUPGraphNVKVNMVNKMGNeighbVtxKMKE
18 12 eleq2i MVNKMVNK
19 eldifsn MVNMVMN
20 19 anbi1i MVNMKMVMNMK
21 18 8 20 3bitri MVNKMVMNMK
22 simpr MVMNMN
23 22 necomd MVMNNM
24 23 adantr MVMNMKNM
25 21 24 sylbi MVNKNM
26 25 3ad2ant3 GUPGraphNVKVNMVNKNM
27 eldifsn KVNKVKN
28 simpr KVKNKN
29 28 necomd KVKNNK
30 27 29 sylbi KVNNK
31 30 3ad2ant2 GUPGraphNVKVNMVNKNK
32 26 31 nelprd GUPGraphNVKVNMVNK¬NMK
33 df-nel NMK¬NMK
34 32 33 sylibr GUPGraphNVKVNMVNKNMK
35 34 adantr GUPGraphNVKVNMVNKMGNeighbVtxKNMK
36 neleq2 e=MKNeNMK
37 36 3 elrab2 MKFMKENMK
38 17 35 37 sylanbrc GUPGraphNVKVNMVNKMGNeighbVtxKMKF
39 1 2 3 4 upgrres1 GUPGraphNVSUPGraph
40 39 3ad2ant1 GUPGraphNVKVNMVNKSUPGraph
41 simp2 GUPGraphNVKVNMVNKKVN
42 18 8 sylbb MVNKMVNMK
43 42 3ad2ant3 GUPGraphNVKVNMVNKMVNMK
44 40 41 43 jca31 GUPGraphNVKVNMVNKSUPGraphKVNMVNMK
45 44 adantr GUPGraphNVKVNMVNKMGNeighbVtxKSUPGraphKVNMVNMK
46 1 2 3 4 upgrres1lem2 VtxS=VN
47 46 eqcomi VN=VtxS
48 edgval EdgS=raniEdgS
49 1 2 3 4 upgrres1lem3 iEdgS=IF
50 49 rneqi raniEdgS=ranIF
51 rnresi ranIF=F
52 48 50 51 3eqtrri F=EdgS
53 47 52 nbupgrel SUPGraphKVNMVNMKMSNeighbVtxKMKF
54 45 53 syl GUPGraphNVKVNMVNKMGNeighbVtxKMSNeighbVtxKMKF
55 38 54 mpbird GUPGraphNVKVNMVNKMGNeighbVtxKMSNeighbVtxK
56 55 ex GUPGraphNVKVNMVNKMGNeighbVtxKMSNeighbVtxK