Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Integer powers - misc. additions
nexple
Next ⟩
Indicator Functions
Metamath Proof Explorer
Ascii
Unicode
Theorem
nexple
Description:
A lower bound for an exponentiation.
(Contributed by
Thierry Arnoux
, 19-Aug-2017)
Ref
Expression
Assertion
nexple
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
→
A
≤
B
A
Proof
Step
Hyp
Ref
Expression
1
simpr
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
∈
ℕ
→
A
∈
ℕ
2
simpl2
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
∈
ℕ
→
B
∈
ℝ
3
simpl3
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
∈
ℕ
→
2
≤
B
4
id
⊢
k
=
1
→
k
=
1
5
oveq2
⊢
k
=
1
→
B
k
=
B
1
6
4
5
breq12d
⊢
k
=
1
→
k
≤
B
k
↔
1
≤
B
1
7
6
imbi2d
⊢
k
=
1
→
B
∈
ℝ
∧
2
≤
B
→
k
≤
B
k
↔
B
∈
ℝ
∧
2
≤
B
→
1
≤
B
1
8
id
⊢
k
=
n
→
k
=
n
9
oveq2
⊢
k
=
n
→
B
k
=
B
n
10
8
9
breq12d
⊢
k
=
n
→
k
≤
B
k
↔
n
≤
B
n
11
10
imbi2d
⊢
k
=
n
→
B
∈
ℝ
∧
2
≤
B
→
k
≤
B
k
↔
B
∈
ℝ
∧
2
≤
B
→
n
≤
B
n
12
id
⊢
k
=
n
+
1
→
k
=
n
+
1
13
oveq2
⊢
k
=
n
+
1
→
B
k
=
B
n
+
1
14
12
13
breq12d
⊢
k
=
n
+
1
→
k
≤
B
k
↔
n
+
1
≤
B
n
+
1
15
14
imbi2d
⊢
k
=
n
+
1
→
B
∈
ℝ
∧
2
≤
B
→
k
≤
B
k
↔
B
∈
ℝ
∧
2
≤
B
→
n
+
1
≤
B
n
+
1
16
id
⊢
k
=
A
→
k
=
A
17
oveq2
⊢
k
=
A
→
B
k
=
B
A
18
16
17
breq12d
⊢
k
=
A
→
k
≤
B
k
↔
A
≤
B
A
19
18
imbi2d
⊢
k
=
A
→
B
∈
ℝ
∧
2
≤
B
→
k
≤
B
k
↔
B
∈
ℝ
∧
2
≤
B
→
A
≤
B
A
20
simpl
⊢
B
∈
ℝ
∧
2
≤
B
→
B
∈
ℝ
21
1nn0
⊢
1
∈
ℕ
0
22
21
a1i
⊢
B
∈
ℝ
∧
2
≤
B
→
1
∈
ℕ
0
23
1red
⊢
B
∈
ℝ
∧
2
≤
B
→
1
∈
ℝ
24
2re
⊢
2
∈
ℝ
25
24
a1i
⊢
B
∈
ℝ
∧
2
≤
B
→
2
∈
ℝ
26
1le2
⊢
1
≤
2
27
26
a1i
⊢
B
∈
ℝ
∧
2
≤
B
→
1
≤
2
28
simpr
⊢
B
∈
ℝ
∧
2
≤
B
→
2
≤
B
29
23
25
20
27
28
letrd
⊢
B
∈
ℝ
∧
2
≤
B
→
1
≤
B
30
20
22
29
expge1d
⊢
B
∈
ℝ
∧
2
≤
B
→
1
≤
B
1
31
simp1
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
∈
ℕ
32
31
nnnn0d
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
∈
ℕ
0
33
32
nn0red
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
∈
ℝ
34
1red
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
1
∈
ℝ
35
33
34
readdcld
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
∈
ℝ
36
20
3ad2ant2
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
B
∈
ℝ
37
33
36
remulcld
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
B
∈
ℝ
38
36
32
reexpcld
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
B
n
∈
ℝ
39
38
36
remulcld
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
B
n
B
∈
ℝ
40
24
a1i
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
2
∈
ℝ
41
33
40
remulcld
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
⋅
2
∈
ℝ
42
31
nnge1d
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
1
≤
n
43
34
33
33
42
leadd2dd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
≤
n
+
n
44
33
recnd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
∈
ℂ
45
44
times2d
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
⋅
2
=
n
+
n
46
43
45
breqtrrd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
≤
n
⋅
2
47
32
nn0ge0d
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
0
≤
n
48
simp2r
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
2
≤
B
49
40
36
33
47
48
lemul2ad
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
⋅
2
≤
n
B
50
35
41
37
46
49
letrd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
≤
n
B
51
0red
⊢
B
∈
ℝ
∧
2
≤
B
→
0
∈
ℝ
52
0le2
⊢
0
≤
2
53
52
a1i
⊢
B
∈
ℝ
∧
2
≤
B
→
0
≤
2
54
51
25
20
53
28
letrd
⊢
B
∈
ℝ
∧
2
≤
B
→
0
≤
B
55
54
3ad2ant2
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
0
≤
B
56
simp3
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
≤
B
n
57
33
38
36
55
56
lemul1ad
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
B
≤
B
n
B
58
35
37
39
50
57
letrd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
≤
B
n
B
59
36
recnd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
B
∈
ℂ
60
59
32
expp1d
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
B
n
+
1
=
B
n
B
61
58
60
breqtrrd
⊢
n
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
∧
n
≤
B
n
→
n
+
1
≤
B
n
+
1
62
61
3exp
⊢
n
∈
ℕ
→
B
∈
ℝ
∧
2
≤
B
→
n
≤
B
n
→
n
+
1
≤
B
n
+
1
63
62
a2d
⊢
n
∈
ℕ
→
B
∈
ℝ
∧
2
≤
B
→
n
≤
B
n
→
B
∈
ℝ
∧
2
≤
B
→
n
+
1
≤
B
n
+
1
64
7
11
15
19
30
63
nnind
⊢
A
∈
ℕ
→
B
∈
ℝ
∧
2
≤
B
→
A
≤
B
A
65
64
3impib
⊢
A
∈
ℕ
∧
B
∈
ℝ
∧
2
≤
B
→
A
≤
B
A
66
1
2
3
65
syl3anc
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
∈
ℕ
→
A
≤
B
A
67
0le1
⊢
0
≤
1
68
67
a1i
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
0
≤
1
69
simpr
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
A
=
0
70
69
oveq2d
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
B
A
=
B
0
71
simpl2
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
B
∈
ℝ
72
71
recnd
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
B
∈
ℂ
73
72
exp0d
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
B
0
=
1
74
70
73
eqtrd
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
B
A
=
1
75
68
69
74
3brtr4d
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
∧
A
=
0
→
A
≤
B
A
76
elnn0
⊢
A
∈
ℕ
0
↔
A
∈
ℕ
∨
A
=
0
77
76
biimpi
⊢
A
∈
ℕ
0
→
A
∈
ℕ
∨
A
=
0
78
77
3ad2ant1
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
→
A
∈
ℕ
∨
A
=
0
79
66
75
78
mpjaodan
⊢
A
∈
ℕ
0
∧
B
∈
ℝ
∧
2
≤
B
→
A
≤
B
A