Metamath Proof Explorer


Theorem nexple

Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017)

Ref Expression
Assertion nexple A0B2BABA

Proof

Step Hyp Ref Expression
1 simpr A0B2BAA
2 simpl2 A0B2BAB
3 simpl3 A0B2BA2B
4 id k=1k=1
5 oveq2 k=1Bk=B1
6 4 5 breq12d k=1kBk1B1
7 6 imbi2d k=1B2BkBkB2B1B1
8 id k=nk=n
9 oveq2 k=nBk=Bn
10 8 9 breq12d k=nkBknBn
11 10 imbi2d k=nB2BkBkB2BnBn
12 id k=n+1k=n+1
13 oveq2 k=n+1Bk=Bn+1
14 12 13 breq12d k=n+1kBkn+1Bn+1
15 14 imbi2d k=n+1B2BkBkB2Bn+1Bn+1
16 id k=Ak=A
17 oveq2 k=ABk=BA
18 16 17 breq12d k=AkBkABA
19 18 imbi2d k=AB2BkBkB2BABA
20 simpl B2BB
21 1nn0 10
22 21 a1i B2B10
23 1red B2B1
24 2re 2
25 24 a1i B2B2
26 1le2 12
27 26 a1i B2B12
28 simpr B2B2B
29 23 25 20 27 28 letrd B2B1B
30 20 22 29 expge1d B2B1B1
31 simp1 nB2BnBnn
32 31 nnnn0d nB2BnBnn0
33 32 nn0red nB2BnBnn
34 1red nB2BnBn1
35 33 34 readdcld nB2BnBnn+1
36 20 3ad2ant2 nB2BnBnB
37 33 36 remulcld nB2BnBnnB
38 36 32 reexpcld nB2BnBnBn
39 38 36 remulcld nB2BnBnBnB
40 24 a1i nB2BnBn2
41 33 40 remulcld nB2BnBnn2
42 31 nnge1d nB2BnBn1n
43 34 33 33 42 leadd2dd nB2BnBnn+1n+n
44 33 recnd nB2BnBnn
45 44 times2d nB2BnBnn2=n+n
46 43 45 breqtrrd nB2BnBnn+1n2
47 32 nn0ge0d nB2BnBn0n
48 simp2r nB2BnBn2B
49 40 36 33 47 48 lemul2ad nB2BnBnn2nB
50 35 41 37 46 49 letrd nB2BnBnn+1nB
51 0red B2B0
52 0le2 02
53 52 a1i B2B02
54 51 25 20 53 28 letrd B2B0B
55 54 3ad2ant2 nB2BnBn0B
56 simp3 nB2BnBnnBn
57 33 38 36 55 56 lemul1ad nB2BnBnnBBnB
58 35 37 39 50 57 letrd nB2BnBnn+1BnB
59 36 recnd nB2BnBnB
60 59 32 expp1d nB2BnBnBn+1=BnB
61 58 60 breqtrrd nB2BnBnn+1Bn+1
62 61 3exp nB2BnBnn+1Bn+1
63 62 a2d nB2BnBnB2Bn+1Bn+1
64 7 11 15 19 30 63 nnind AB2BABA
65 64 3impib AB2BABA
66 1 2 3 65 syl3anc A0B2BAABA
67 0le1 01
68 67 a1i A0B2BA=001
69 simpr A0B2BA=0A=0
70 69 oveq2d A0B2BA=0BA=B0
71 simpl2 A0B2BA=0B
72 71 recnd A0B2BA=0B
73 72 exp0d A0B2BA=0B0=1
74 70 73 eqtrd A0B2BA=0BA=1
75 68 69 74 3brtr4d A0B2BA=0ABA
76 elnn0 A0AA=0
77 76 biimpi A0AA=0
78 77 3ad2ant1 A0B2BAA=0
79 66 75 78 mpjaodan A0B2BABA