| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
simpl2 |
|
| 3 |
|
simpl3 |
|
| 4 |
|
id |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
breq12d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
|
id |
|
| 9 |
|
oveq2 |
|
| 10 |
8 9
|
breq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
id |
|
| 13 |
|
oveq2 |
|
| 14 |
12 13
|
breq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
id |
|
| 17 |
|
oveq2 |
|
| 18 |
16 17
|
breq12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
simpl |
|
| 21 |
|
1nn0 |
|
| 22 |
21
|
a1i |
|
| 23 |
|
1red |
|
| 24 |
|
2re |
|
| 25 |
24
|
a1i |
|
| 26 |
|
1le2 |
|
| 27 |
26
|
a1i |
|
| 28 |
|
simpr |
|
| 29 |
23 25 20 27 28
|
letrd |
|
| 30 |
20 22 29
|
expge1d |
|
| 31 |
|
simp1 |
|
| 32 |
31
|
nnred |
|
| 33 |
|
1red |
|
| 34 |
32 33
|
readdcld |
|
| 35 |
20
|
3ad2ant2 |
|
| 36 |
32 35
|
remulcld |
|
| 37 |
31
|
nnnn0d |
|
| 38 |
35 37
|
reexpcld |
|
| 39 |
38 35
|
remulcld |
|
| 40 |
24
|
a1i |
|
| 41 |
32 40
|
remulcld |
|
| 42 |
31
|
nnge1d |
|
| 43 |
33 32 32 42
|
leadd2dd |
|
| 44 |
32
|
recnd |
|
| 45 |
44
|
times2d |
|
| 46 |
43 45
|
breqtrrd |
|
| 47 |
37
|
nn0ge0d |
|
| 48 |
|
simp2r |
|
| 49 |
40 35 32 47 48
|
lemul2ad |
|
| 50 |
34 41 36 46 49
|
letrd |
|
| 51 |
|
0red |
|
| 52 |
|
0le2 |
|
| 53 |
52
|
a1i |
|
| 54 |
51 25 20 53 28
|
letrd |
|
| 55 |
54
|
3ad2ant2 |
|
| 56 |
|
simp3 |
|
| 57 |
32 38 35 55 56
|
lemul1ad |
|
| 58 |
34 36 39 50 57
|
letrd |
|
| 59 |
35
|
recnd |
|
| 60 |
59 37
|
expp1d |
|
| 61 |
58 60
|
breqtrrd |
|
| 62 |
61
|
3exp |
|
| 63 |
62
|
a2d |
|
| 64 |
7 11 15 19 30 63
|
nnind |
|
| 65 |
64
|
3impib |
|
| 66 |
1 2 3 65
|
syl3anc |
|
| 67 |
|
0le1 |
|
| 68 |
67
|
a1i |
|
| 69 |
|
simpr |
|
| 70 |
69
|
oveq2d |
|
| 71 |
|
simpl2 |
|
| 72 |
71
|
recnd |
|
| 73 |
72
|
exp0d |
|
| 74 |
70 73
|
eqtrd |
|
| 75 |
68 69 74
|
3brtr4d |
|
| 76 |
|
elnn0 |
|
| 77 |
76
|
biimpi |
|
| 78 |
77
|
3ad2ant1 |
|
| 79 |
66 75 78
|
mpjaodan |
|