Metamath Proof Explorer


Theorem nglmle

Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007) (Revised by AV, 16-Oct-2021)

Ref Expression
Hypotheses nglmle.1 X=BaseG
nglmle.2 D=distGX×X
nglmle.3 J=MetOpenD
nglmle.5 N=normG
nglmle.6 φGNrmGrp
nglmle.7 φF:X
nglmle.8 φFtJP
nglmle.9 φR*
nglmle.10 φkNFkR
Assertion nglmle φNPR

Proof

Step Hyp Ref Expression
1 nglmle.1 X=BaseG
2 nglmle.2 D=distGX×X
3 nglmle.3 J=MetOpenD
4 nglmle.5 N=normG
5 nglmle.6 φGNrmGrp
6 nglmle.7 φF:X
7 nglmle.8 φFtJP
8 nglmle.9 φR*
9 nglmle.10 φkNFkR
10 ngpgrp GNrmGrpGGrp
11 5 10 syl φGGrp
12 ngpms GNrmGrpGMetSp
13 5 12 syl φGMetSp
14 msxms GMetSpG∞MetSp
15 13 14 syl φG∞MetSp
16 1 2 xmsxmet G∞MetSpD∞MetX
17 15 16 syl φD∞MetX
18 3 mopntopon D∞MetXJTopOnX
19 17 18 syl φJTopOnX
20 lmcl JTopOnXFtJPPX
21 19 7 20 syl2anc φPX
22 eqid 0G=0G
23 eqid distG=distG
24 4 1 22 23 2 nmval2 GGrpPXNP=PD0G
25 11 21 24 syl2anc φNP=PD0G
26 1 22 grpidcl GGrp0GX
27 11 26 syl φ0GX
28 xmetsym D∞MetXPX0GXPD0G=0GDP
29 17 21 27 28 syl3anc φPD0G=0GDP
30 25 29 eqtrd φNP=0GDP
31 nnuz =1
32 1zzd φ1
33 11 adantr φkGGrp
34 6 ffvelcdmda φkFkX
35 4 1 22 23 2 nmval2 GGrpFkXNFk=FkD0G
36 33 34 35 syl2anc φkNFk=FkD0G
37 17 adantr φkD∞MetX
38 27 adantr φk0GX
39 xmetsym D∞MetXFkX0GXFkD0G=0GDFk
40 37 34 38 39 syl3anc φkFkD0G=0GDFk
41 36 40 eqtrd φkNFk=0GDFk
42 41 9 eqbrtrrd φk0GDFkR
43 31 3 17 32 7 27 8 42 lmle φ0GDPR
44 30 43 eqbrtrd φNPR