Metamath Proof Explorer


Theorem ngpocelbl

Description: Membership of an off-center vector in a ball in a normed module. (Contributed by NM, 27-Dec-2007) (Revised by AV, 14-Oct-2021)

Ref Expression
Hypotheses ngpocelbl.n N = norm G
ngpocelbl.x X = Base G
ngpocelbl.p + ˙ = + G
ngpocelbl.d D = dist G X × X
Assertion ngpocelbl G NrmMod R * P X A X P + ˙ A P ball D R N A < R

Proof

Step Hyp Ref Expression
1 ngpocelbl.n N = norm G
2 ngpocelbl.x X = Base G
3 ngpocelbl.p + ˙ = + G
4 ngpocelbl.d D = dist G X × X
5 nlmngp G NrmMod G NrmGrp
6 2 4 ngpmet G NrmGrp D Met X
7 metxmet D Met X D ∞Met X
8 5 6 7 3syl G NrmMod D ∞Met X
9 8 anim1i G NrmMod R * D ∞Met X R *
10 9 3adant3 G NrmMod R * P X A X D ∞Met X R *
11 simp3l G NrmMod R * P X A X P X
12 ngpgrp G NrmGrp G Grp
13 5 12 syl G NrmMod G Grp
14 13 3ad2ant1 G NrmMod R * P X A X G Grp
15 simp3 G NrmMod R * P X A X P X A X
16 3anass G Grp P X A X G Grp P X A X
17 14 15 16 sylanbrc G NrmMod R * P X A X G Grp P X A X
18 2 3 grpcl G Grp P X A X P + ˙ A X
19 17 18 syl G NrmMod R * P X A X P + ˙ A X
20 11 19 jca G NrmMod R * P X A X P X P + ˙ A X
21 10 20 jca G NrmMod R * P X A X D ∞Met X R * P X P + ˙ A X
22 elbl2 D ∞Met X R * P X P + ˙ A X P + ˙ A P ball D R P D P + ˙ A < R
23 21 22 syl G NrmMod R * P X A X P + ˙ A P ball D R P D P + ˙ A < R
24 4 oveqi P D P + ˙ A = P dist G X × X P + ˙ A
25 ovres P X P + ˙ A X P dist G X × X P + ˙ A = P dist G P + ˙ A
26 24 25 eqtrid P X P + ˙ A X P D P + ˙ A = P dist G P + ˙ A
27 20 26 syl G NrmMod R * P X A X P D P + ˙ A = P dist G P + ˙ A
28 5 3ad2ant1 G NrmMod R * P X A X G NrmGrp
29 eqid - G = - G
30 eqid dist G = dist G
31 1 2 29 30 ngpdsr G NrmGrp P X P + ˙ A X P dist G P + ˙ A = N P + ˙ A - G P
32 28 11 19 31 syl3anc G NrmMod R * P X A X P dist G P + ˙ A = N P + ˙ A - G P
33 nlmlmod G NrmMod G LMod
34 lmodabl G LMod G Abel
35 33 34 syl G NrmMod G Abel
36 35 3ad2ant1 G NrmMod R * P X A X G Abel
37 3anass G Abel P X A X G Abel P X A X
38 36 15 37 sylanbrc G NrmMod R * P X A X G Abel P X A X
39 2 3 29 ablpncan2 G Abel P X A X P + ˙ A - G P = A
40 38 39 syl G NrmMod R * P X A X P + ˙ A - G P = A
41 40 fveq2d G NrmMod R * P X A X N P + ˙ A - G P = N A
42 27 32 41 3eqtrd G NrmMod R * P X A X P D P + ˙ A = N A
43 42 breq1d G NrmMod R * P X A X P D P + ˙ A < R N A < R
44 23 43 bitrd G NrmMod R * P X A X P + ˙ A P ball D R N A < R