Metamath Proof Explorer


Theorem nmods

Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015)

Ref Expression
Hypotheses nmods.n N=SnormOpT
nmods.v V=BaseS
nmods.c C=distS
nmods.d D=distT
Assertion nmods FSNGHomTAVBVFADFBNFACB

Proof

Step Hyp Ref Expression
1 nmods.n N=SnormOpT
2 nmods.v V=BaseS
3 nmods.c C=distS
4 nmods.d D=distT
5 simp1 FSNGHomTAVBVFSNGHomT
6 nghmrcl1 FSNGHomTSNrmGrp
7 ngpgrp SNrmGrpSGrp
8 6 7 syl FSNGHomTSGrp
9 eqid -S=-S
10 2 9 grpsubcl SGrpAVBVA-SBV
11 8 10 syl3an1 FSNGHomTAVBVA-SBV
12 eqid normS=normS
13 eqid normT=normT
14 1 2 12 13 nmoi FSNGHomTA-SBVnormTFA-SBNFnormSA-SB
15 5 11 14 syl2anc FSNGHomTAVBVnormTFA-SBNFnormSA-SB
16 nghmrcl2 FSNGHomTTNrmGrp
17 16 3ad2ant1 FSNGHomTAVBVTNrmGrp
18 nghmghm FSNGHomTFSGrpHomT
19 18 3ad2ant1 FSNGHomTAVBVFSGrpHomT
20 eqid BaseT=BaseT
21 2 20 ghmf FSGrpHomTF:VBaseT
22 19 21 syl FSNGHomTAVBVF:VBaseT
23 simp2 FSNGHomTAVBVAV
24 22 23 ffvelcdmd FSNGHomTAVBVFABaseT
25 simp3 FSNGHomTAVBVBV
26 22 25 ffvelcdmd FSNGHomTAVBVFBBaseT
27 eqid -T=-T
28 13 20 27 4 ngpds TNrmGrpFABaseTFBBaseTFADFB=normTFA-TFB
29 17 24 26 28 syl3anc FSNGHomTAVBVFADFB=normTFA-TFB
30 2 9 27 ghmsub FSGrpHomTAVBVFA-SB=FA-TFB
31 18 30 syl3an1 FSNGHomTAVBVFA-SB=FA-TFB
32 31 fveq2d FSNGHomTAVBVnormTFA-SB=normTFA-TFB
33 29 32 eqtr4d FSNGHomTAVBVFADFB=normTFA-SB
34 12 2 9 3 ngpds SNrmGrpAVBVACB=normSA-SB
35 6 34 syl3an1 FSNGHomTAVBVACB=normSA-SB
36 35 oveq2d FSNGHomTAVBVNFACB=NFnormSA-SB
37 15 33 36 3brtr4d FSNGHomTAVBVFADFBNFACB