Metamath Proof Explorer


Theorem nmoofval

Description: The operator norm function. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmoofval.1 X=BaseSetU
nmoofval.2 Y=BaseSetW
nmoofval.3 L=normCVU
nmoofval.4 M=normCVW
nmoofval.6 N=UnormOpOLDW
Assertion nmoofval UNrmCVecWNrmCVecN=tYXsupx|zXLz1x=Mtz*<

Proof

Step Hyp Ref Expression
1 nmoofval.1 X=BaseSetU
2 nmoofval.2 Y=BaseSetW
3 nmoofval.3 L=normCVU
4 nmoofval.4 M=normCVW
5 nmoofval.6 N=UnormOpOLDW
6 fveq2 u=UBaseSetu=BaseSetU
7 6 1 eqtr4di u=UBaseSetu=X
8 7 oveq2d u=UBaseSetwBaseSetu=BaseSetwX
9 fveq2 u=UnormCVu=normCVU
10 9 3 eqtr4di u=UnormCVu=L
11 10 fveq1d u=UnormCVuz=Lz
12 11 breq1d u=UnormCVuz1Lz1
13 12 anbi1d u=UnormCVuz1x=normCVwtzLz1x=normCVwtz
14 7 13 rexeqbidv u=UzBaseSetunormCVuz1x=normCVwtzzXLz1x=normCVwtz
15 14 abbidv u=Ux|zBaseSetunormCVuz1x=normCVwtz=x|zXLz1x=normCVwtz
16 15 supeq1d u=Usupx|zBaseSetunormCVuz1x=normCVwtz*<=supx|zXLz1x=normCVwtz*<
17 8 16 mpteq12dv u=UtBaseSetwBaseSetusupx|zBaseSetunormCVuz1x=normCVwtz*<=tBaseSetwXsupx|zXLz1x=normCVwtz*<
18 fveq2 w=WBaseSetw=BaseSetW
19 18 2 eqtr4di w=WBaseSetw=Y
20 19 oveq1d w=WBaseSetwX=YX
21 fveq2 w=WnormCVw=normCVW
22 21 4 eqtr4di w=WnormCVw=M
23 22 fveq1d w=WnormCVwtz=Mtz
24 23 eqeq2d w=Wx=normCVwtzx=Mtz
25 24 anbi2d w=WLz1x=normCVwtzLz1x=Mtz
26 25 rexbidv w=WzXLz1x=normCVwtzzXLz1x=Mtz
27 26 abbidv w=Wx|zXLz1x=normCVwtz=x|zXLz1x=Mtz
28 27 supeq1d w=Wsupx|zXLz1x=normCVwtz*<=supx|zXLz1x=Mtz*<
29 20 28 mpteq12dv w=WtBaseSetwXsupx|zXLz1x=normCVwtz*<=tYXsupx|zXLz1x=Mtz*<
30 df-nmoo normOpOLD=uNrmCVec,wNrmCVectBaseSetwBaseSetusupx|zBaseSetunormCVuz1x=normCVwtz*<
31 ovex YXV
32 31 mptex tYXsupx|zXLz1x=Mtz*<V
33 17 29 30 32 ovmpo UNrmCVecWNrmCVecUnormOpOLDW=tYXsupx|zXLz1x=Mtz*<
34 5 33 eqtrid UNrmCVecWNrmCVecN=tYXsupx|zXLz1x=Mtz*<