Metamath Proof Explorer


Theorem nmopleid

Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopleid THrmOpnormopTT0hop1normopT·opTopIop

Proof

Step Hyp Ref Expression
1 hmoplin THrmOpTLinOp
2 nmlnopne0 TLinOpnormopT0T0hop
3 2 biimpar TLinOpT0hopnormopT0
4 1 3 sylan THrmOpT0hopnormopT0
5 4 adantlr THrmOpnormopTT0hopnormopT0
6 rereccl normopTnormopT01normopT
7 6 adantll THrmOpnormopTnormopT01normopT
8 simpll THrmOpnormopTnormopT0THrmOp
9 idhmop IopHrmOp
10 hmopm normopTIopHrmOpnormopT·opIopHrmOp
11 9 10 mpan2 normopTnormopT·opIopHrmOp
12 11 ad2antlr THrmOpnormopTnormopT0normopT·opIopHrmOp
13 simplr THrmOpnormopTnormopT0normopT
14 hmopf THrmOpT:
15 nmopgt0 T:normopT00<normopT
16 15 biimpa T:normopT00<normopT
17 14 16 sylan THrmOpnormopT00<normopT
18 17 adantlr THrmOpnormopTnormopT00<normopT
19 13 18 recgt0d THrmOpnormopTnormopT00<1normopT
20 0re 0
21 ltle 01normopT0<1normopT01normopT
22 20 6 21 sylancr normopTnormopT00<1normopT01normopT
23 22 adantll THrmOpnormopTnormopT00<1normopT01normopT
24 19 23 mpd THrmOpnormopTnormopT001normopT
25 leopnmid THrmOpnormopTTopnormopT·opIop
26 25 adantr THrmOpnormopTnormopT0TopnormopT·opIop
27 leopmul2i 1normopTTHrmOpnormopT·opIopHrmOp01normopTTopnormopT·opIop1normopT·opTop1normopT·opnormopT·opIop
28 7 8 12 24 26 27 syl32anc THrmOpnormopTnormopT01normopT·opTop1normopT·opnormopT·opIop
29 recn normopTnormopT
30 reccl normopTnormopT01normopT
31 simpl normopTnormopT0normopT
32 hoif Iop:1-1 onto
33 f1of Iop:1-1 ontoIop:
34 32 33 ax-mp Iop:
35 homulass 1normopTnormopTIop:1normopTnormopT·opIop=1normopT·opnormopT·opIop
36 34 35 mp3an3 1normopTnormopT1normopTnormopT·opIop=1normopT·opnormopT·opIop
37 30 31 36 syl2anc normopTnormopT01normopTnormopT·opIop=1normopT·opnormopT·opIop
38 recid2 normopTnormopT01normopTnormopT=1
39 38 oveq1d normopTnormopT01normopTnormopT·opIop=1·opIop
40 37 39 eqtr3d normopTnormopT01normopT·opnormopT·opIop=1·opIop
41 homullid Iop:1·opIop=Iop
42 34 41 ax-mp 1·opIop=Iop
43 40 42 eqtrdi normopTnormopT01normopT·opnormopT·opIop=Iop
44 29 43 sylan normopTnormopT01normopT·opnormopT·opIop=Iop
45 44 adantll THrmOpnormopTnormopT01normopT·opnormopT·opIop=Iop
46 28 45 breqtrd THrmOpnormopTnormopT01normopT·opTopIop
47 5 46 syldan THrmOpnormopTT0hop1normopT·opTopIop
48 47 3impa THrmOpnormopTT0hop1normopT·opTopIop