Description: A nonzero, bounded Hermitian operator divided by its norm is less than or equal to the identity operator. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nmopleid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmoplin | |
|
2 | nmlnopne0 | |
|
3 | 2 | biimpar | |
4 | 1 3 | sylan | |
5 | 4 | adantlr | |
6 | rereccl | |
|
7 | 6 | adantll | |
8 | simpll | |
|
9 | idhmop | |
|
10 | hmopm | |
|
11 | 9 10 | mpan2 | |
12 | 11 | ad2antlr | |
13 | simplr | |
|
14 | hmopf | |
|
15 | nmopgt0 | |
|
16 | 15 | biimpa | |
17 | 14 16 | sylan | |
18 | 17 | adantlr | |
19 | 13 18 | recgt0d | |
20 | 0re | |
|
21 | ltle | |
|
22 | 20 6 21 | sylancr | |
23 | 22 | adantll | |
24 | 19 23 | mpd | |
25 | leopnmid | |
|
26 | 25 | adantr | |
27 | leopmul2i | |
|
28 | 7 8 12 24 26 27 | syl32anc | |
29 | recn | |
|
30 | reccl | |
|
31 | simpl | |
|
32 | hoif | |
|
33 | f1of | |
|
34 | 32 33 | ax-mp | |
35 | homulass | |
|
36 | 34 35 | mp3an3 | |
37 | 30 31 36 | syl2anc | |
38 | recid2 | |
|
39 | 38 | oveq1d | |
40 | 37 39 | eqtr3d | |
41 | homullid | |
|
42 | 34 41 | ax-mp | |
43 | 40 42 | eqtrdi | |
44 | 29 43 | sylan | |
45 | 44 | adantll | |
46 | 28 45 | breqtrd | |
47 | 5 46 | syldan | |
48 | 47 | 3impa | |