Metamath Proof Explorer


Theorem nn0sub

Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn0sub M0N0MNNM0

Proof

Step Hyp Ref Expression
1 nn0re M0M
2 nn0re N0N
3 leloe MNMNM<NM=N
4 1 2 3 syl2an M0N0MNM<NM=N
5 elnn0 N0NN=0
6 elnn0 M0MM=0
7 nnsub MNM<NNM
8 7 ex MNM<NNM
9 nngt0 N0<N
10 nncn NN
11 10 subid1d NN0=N
12 id NN
13 11 12 eqeltrd NN0
14 9 13 2thd N0<NN0
15 breq1 M=0M<N0<N
16 oveq2 M=0NM=N0
17 16 eleq1d M=0NMN0
18 15 17 bibi12d M=0M<NNM0<NN0
19 14 18 imbitrrid M=0NM<NNM
20 8 19 jaoi MM=0NM<NNM
21 6 20 sylbi M0NM<NNM
22 nn0nlt0 M0¬M<0
23 22 pm2.21d M0M<00M
24 nngt0 0M0<0M
25 0re 0
26 posdif M0M<00<0M
27 1 25 26 sylancl M0M<00<0M
28 24 27 imbitrrid M00MM<0
29 23 28 impbid M0M<00M
30 breq2 N=0M<NM<0
31 oveq1 N=0NM=0M
32 31 eleq1d N=0NM0M
33 30 32 bibi12d N=0M<NNMM<00M
34 29 33 syl5ibrcom M0N=0M<NNM
35 21 34 jaod M0NN=0M<NNM
36 5 35 biimtrid M0N0M<NNM
37 36 imp M0N0M<NNM
38 nn0cn N0N
39 nn0cn M0M
40 subeq0 NMNM=0N=M
41 38 39 40 syl2anr M0N0NM=0N=M
42 eqcom N=MM=N
43 41 42 bitr2di M0N0M=NNM=0
44 37 43 orbi12d M0N0M<NM=NNMNM=0
45 4 44 bitrd M0N0MNNMNM=0
46 elnn0 NM0NMNM=0
47 45 46 bitr4di M0N0MNNM0