Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0sub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re | |
|
2 | nn0re | |
|
3 | leloe | |
|
4 | 1 2 3 | syl2an | |
5 | elnn0 | |
|
6 | elnn0 | |
|
7 | nnsub | |
|
8 | 7 | ex | |
9 | nngt0 | |
|
10 | nncn | |
|
11 | 10 | subid1d | |
12 | id | |
|
13 | 11 12 | eqeltrd | |
14 | 9 13 | 2thd | |
15 | breq1 | |
|
16 | oveq2 | |
|
17 | 16 | eleq1d | |
18 | 15 17 | bibi12d | |
19 | 14 18 | imbitrrid | |
20 | 8 19 | jaoi | |
21 | 6 20 | sylbi | |
22 | nn0nlt0 | |
|
23 | 22 | pm2.21d | |
24 | nngt0 | |
|
25 | 0re | |
|
26 | posdif | |
|
27 | 1 25 26 | sylancl | |
28 | 24 27 | imbitrrid | |
29 | 23 28 | impbid | |
30 | breq2 | |
|
31 | oveq1 | |
|
32 | 31 | eleq1d | |
33 | 30 32 | bibi12d | |
34 | 29 33 | syl5ibrcom | |
35 | 21 34 | jaod | |
36 | 5 35 | biimtrid | |
37 | 36 | imp | |
38 | nn0cn | |
|
39 | nn0cn | |
|
40 | subeq0 | |
|
41 | 38 39 40 | syl2anr | |
42 | eqcom | |
|
43 | 41 42 | bitr2di | |
44 | 37 43 | orbi12d | |
45 | 4 44 | bitrd | |
46 | elnn0 | |
|
47 | 45 46 | bitr4di | |