Metamath Proof Explorer


Theorem nnlogbexp

Description: Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion nnlogbexp B 2 M log B B M = M

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 B 2 B + B 0 B 1
2 1 adantr B 2 M B + B 0 B 1
3 2 simp1d B 2 M B +
4 3 rpcnd B 2 M B
5 4 adantr B 2 M M = 0 B
6 2 simp2d B 2 M B 0
7 6 adantr B 2 M M = 0 B 0
8 2 simp3d B 2 M B 1
9 8 adantr B 2 M M = 0 B 1
10 logb1 B B 0 B 1 log B 1 = 0
11 5 7 9 10 syl3anc B 2 M M = 0 log B 1 = 0
12 simpr B 2 M M = 0 M = 0
13 12 oveq2d B 2 M M = 0 B M = B 0
14 5 exp0d B 2 M M = 0 B 0 = 1
15 13 14 eqtrd B 2 M M = 0 B M = 1
16 15 oveq2d B 2 M M = 0 log B B M = log B 1
17 11 16 12 3eqtr4d B 2 M M = 0 log B B M = M
18 4 adantr B 2 M M 0 B
19 6 adantr B 2 M M 0 B 0
20 8 adantr B 2 M M 0 B 1
21 eldifpr B 0 1 B B 0 B 1
22 18 19 20 21 syl3anbrc B 2 M M 0 B 0 1
23 3 adantr B 2 M M 0 B +
24 simpr B 2 M M
25 24 adantr B 2 M M 0 M
26 23 25 rpexpcld B 2 M M 0 B M +
27 26 rpcnne0d B 2 M M 0 B M B M 0
28 eldifsn B M 0 B M B M 0
29 27 28 sylibr B 2 M M 0 B M 0
30 logbval B 0 1 B M 0 log B B M = log B M log B
31 22 29 30 syl2anc B 2 M M 0 log B B M = log B M log B
32 24 zred B 2 M M
33 32 adantr B 2 M M 0 M
34 23 33 logcxpd B 2 M M 0 log B M = M log B
35 18 19 25 cxpexpzd B 2 M M 0 B M = B M
36 35 fveq2d B 2 M M 0 log B M = log B M
37 34 36 eqtr3d B 2 M M 0 M log B = log B M
38 37 oveq1d B 2 M M 0 M log B log B = log B M log B
39 33 recnd B 2 M M 0 M
40 18 19 logcld B 2 M M 0 log B
41 logne0 B + B 1 log B 0
42 23 20 41 syl2anc B 2 M M 0 log B 0
43 39 40 42 divcan4d B 2 M M 0 M log B log B = M
44 31 38 43 3eqtr2d B 2 M M 0 log B B M = M
45 17 44 pm2.61dane B 2 M log B B M = M