Description: Given A greater than or equal to B , equal to B up to X , and A ( X ) = 1o , then ` ( A |`` suc X ) = ( B |`suc X ) . (Contributed by Scott Fenton, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nogesgn1ores | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres | |
|
2 | simp11 | |
|
3 | nodmord | |
|
4 | 2 3 | syl | |
5 | ndmfv | |
|
6 | 1n0 | |
|
7 | 6 | necomi | |
8 | neeq1 | |
|
9 | 7 8 | mpbiri | |
10 | 9 | neneqd | |
11 | 5 10 | syl | |
12 | 11 | con4i | |
13 | 12 | adantl | |
14 | 13 | 3ad2ant2 | |
15 | ordsucss | |
|
16 | 4 14 15 | sylc | |
17 | df-ss | |
|
18 | 16 17 | sylib | |
19 | 1 18 | eqtrid | |
20 | dmres | |
|
21 | simp12 | |
|
22 | nodmord | |
|
23 | 21 22 | syl | |
24 | nogesgn1o | |
|
25 | ndmfv | |
|
26 | neeq1 | |
|
27 | 7 26 | mpbiri | |
28 | 27 | neneqd | |
29 | 25 28 | syl | |
30 | 29 | con4i | |
31 | 24 30 | syl | |
32 | ordsucss | |
|
33 | 23 31 32 | sylc | |
34 | df-ss | |
|
35 | 33 34 | sylib | |
36 | 20 35 | eqtrid | |
37 | 19 36 | eqtr4d | |
38 | 19 | eleq2d | |
39 | vex | |
|
40 | 39 | elsuc | |
41 | simpl2l | |
|
42 | 41 | fveq1d | |
43 | simpr | |
|
44 | 43 | fvresd | |
45 | 43 | fvresd | |
46 | 42 44 45 | 3eqtr3d | |
47 | 46 | ex | |
48 | simp2r | |
|
49 | 48 24 | eqtr4d | |
50 | fveq2 | |
|
51 | fveq2 | |
|
52 | 50 51 | eqeq12d | |
53 | 49 52 | syl5ibrcom | |
54 | 47 53 | jaod | |
55 | 40 54 | biimtrid | |
56 | 55 | imp | |
57 | simpr | |
|
58 | 57 | fvresd | |
59 | 57 | fvresd | |
60 | 56 58 59 | 3eqtr4d | |
61 | 60 | ex | |
62 | 38 61 | sylbid | |
63 | 62 | ralrimiv | |
64 | nofun | |
|
65 | 2 64 | syl | |
66 | 65 | funresd | |
67 | nofun | |
|
68 | 21 67 | syl | |
69 | 68 | funresd | |
70 | eqfunfv | |
|
71 | 66 69 70 | syl2anc | |
72 | 37 63 71 | mpbir2and | |