Metamath Proof Explorer


Theorem noinfbnd1lem6

Description: Lemma for noinfbnd1 . Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
Assertion noinfbnd1lem6 ¬ x B y B ¬ y < s x B No B V U B T < s U dom T

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
2 simp2l ¬ x B y B ¬ y < s x B No B V U B B No
3 simp3 ¬ x B y B ¬ y < s x B No B V U B U B
4 2 3 sseldd ¬ x B y B ¬ y < s x B No B V U B U No
5 nofv U No U dom T = U dom T = 1 𝑜 U dom T = 2 𝑜
6 4 5 syl ¬ x B y B ¬ y < s x B No B V U B U dom T = U dom T = 1 𝑜 U dom T = 2 𝑜
7 3oran U dom T = U dom T = 1 𝑜 U dom T = 2 𝑜 ¬ ¬ U dom T = ¬ U dom T = 1 𝑜 ¬ U dom T = 2 𝑜
8 6 7 sylib ¬ x B y B ¬ y < s x B No B V U B ¬ ¬ U dom T = ¬ U dom T = 1 𝑜 ¬ U dom T = 2 𝑜
9 simpl1 ¬ x B y B ¬ y < s x B No B V U B T = U dom T ¬ x B y B ¬ y < s x
10 simpl2 ¬ x B y B ¬ y < s x B No B V U B T = U dom T B No B V
11 simpl3 ¬ x B y B ¬ y < s x B No B V U B T = U dom T U B
12 simpr ¬ x B y B ¬ y < s x B No B V U B T = U dom T T = U dom T
13 12 eqcomd ¬ x B y B ¬ y < s x B No B V U B T = U dom T U dom T = T
14 1 noinfbnd1lem4 ¬ x B y B ¬ y < s x B No B V U B U dom T = T U dom T
15 9 10 11 13 14 syl112anc ¬ x B y B ¬ y < s x B No B V U B T = U dom T U dom T
16 15 neneqd ¬ x B y B ¬ y < s x B No B V U B T = U dom T ¬ U dom T =
17 1 noinfbnd1lem3 ¬ x B y B ¬ y < s x B No B V U B U dom T = T U dom T 1 𝑜
18 9 10 11 13 17 syl112anc ¬ x B y B ¬ y < s x B No B V U B T = U dom T U dom T 1 𝑜
19 18 neneqd ¬ x B y B ¬ y < s x B No B V U B T = U dom T ¬ U dom T = 1 𝑜
20 1 noinfbnd1lem5 ¬ x B y B ¬ y < s x B No B V U B U dom T = T U dom T 2 𝑜
21 9 10 11 13 20 syl112anc ¬ x B y B ¬ y < s x B No B V U B T = U dom T U dom T 2 𝑜
22 21 neneqd ¬ x B y B ¬ y < s x B No B V U B T = U dom T ¬ U dom T = 2 𝑜
23 16 19 22 3jca ¬ x B y B ¬ y < s x B No B V U B T = U dom T ¬ U dom T = ¬ U dom T = 1 𝑜 ¬ U dom T = 2 𝑜
24 8 23 mtand ¬ x B y B ¬ y < s x B No B V U B ¬ T = U dom T
25 1 noinfbnd1lem1 ¬ x B y B ¬ y < s x B No B V U B ¬ U dom T < s T
26 1 noinfno B No B V T No
27 26 3ad2ant2 ¬ x B y B ¬ y < s x B No B V U B T No
28 nodmon T No dom T On
29 27 28 syl ¬ x B y B ¬ y < s x B No B V U B dom T On
30 noreson U No dom T On U dom T No
31 4 29 30 syl2anc ¬ x B y B ¬ y < s x B No B V U B U dom T No
32 sltso < s Or No
33 solin < s Or No T No U dom T No T < s U dom T T = U dom T U dom T < s T
34 32 33 mpan T No U dom T No T < s U dom T T = U dom T U dom T < s T
35 27 31 34 syl2anc ¬ x B y B ¬ y < s x B No B V U B T < s U dom T T = U dom T U dom T < s T
36 24 25 35 ecase23d ¬ x B y B ¬ y < s x B No B V U B T < s U dom T