Metamath Proof Explorer


Theorem noinfbnd1lem6

Description: Lemma for noinfbnd1 . Establish a hard lower bound when there is no minimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypothesis noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noinfbnd1lem6 ¬xByB¬y<sxBNoBVUBT<sUdomT

Proof

Step Hyp Ref Expression
1 noinfbnd1.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 simp2l ¬xByB¬y<sxBNoBVUBBNo
3 simp3 ¬xByB¬y<sxBNoBVUBUB
4 2 3 sseldd ¬xByB¬y<sxBNoBVUBUNo
5 nofv UNoUdomT=UdomT=1𝑜UdomT=2𝑜
6 4 5 syl ¬xByB¬y<sxBNoBVUBUdomT=UdomT=1𝑜UdomT=2𝑜
7 3oran UdomT=UdomT=1𝑜UdomT=2𝑜¬¬UdomT=¬UdomT=1𝑜¬UdomT=2𝑜
8 6 7 sylib ¬xByB¬y<sxBNoBVUB¬¬UdomT=¬UdomT=1𝑜¬UdomT=2𝑜
9 simpl1 ¬xByB¬y<sxBNoBVUBT=UdomT¬xByB¬y<sx
10 simpl2 ¬xByB¬y<sxBNoBVUBT=UdomTBNoBV
11 simpl3 ¬xByB¬y<sxBNoBVUBT=UdomTUB
12 simpr ¬xByB¬y<sxBNoBVUBT=UdomTT=UdomT
13 12 eqcomd ¬xByB¬y<sxBNoBVUBT=UdomTUdomT=T
14 1 noinfbnd1lem4 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT
15 9 10 11 13 14 syl112anc ¬xByB¬y<sxBNoBVUBT=UdomTUdomT
16 15 neneqd ¬xByB¬y<sxBNoBVUBT=UdomT¬UdomT=
17 1 noinfbnd1lem3 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT1𝑜
18 9 10 11 13 17 syl112anc ¬xByB¬y<sxBNoBVUBT=UdomTUdomT1𝑜
19 18 neneqd ¬xByB¬y<sxBNoBVUBT=UdomT¬UdomT=1𝑜
20 1 noinfbnd1lem5 ¬xByB¬y<sxBNoBVUBUdomT=TUdomT2𝑜
21 9 10 11 13 20 syl112anc ¬xByB¬y<sxBNoBVUBT=UdomTUdomT2𝑜
22 21 neneqd ¬xByB¬y<sxBNoBVUBT=UdomT¬UdomT=2𝑜
23 16 19 22 3jca ¬xByB¬y<sxBNoBVUBT=UdomT¬UdomT=¬UdomT=1𝑜¬UdomT=2𝑜
24 8 23 mtand ¬xByB¬y<sxBNoBVUB¬T=UdomT
25 1 noinfbnd1lem1 ¬xByB¬y<sxBNoBVUB¬UdomT<sT
26 1 noinfno BNoBVTNo
27 26 3ad2ant2 ¬xByB¬y<sxBNoBVUBTNo
28 nodmon TNodomTOn
29 27 28 syl ¬xByB¬y<sxBNoBVUBdomTOn
30 noreson UNodomTOnUdomTNo
31 4 29 30 syl2anc ¬xByB¬y<sxBNoBVUBUdomTNo
32 sltso <sOrNo
33 solin <sOrNoTNoUdomTNoT<sUdomTT=UdomTUdomT<sT
34 32 33 mpan TNoUdomTNoT<sUdomTT=UdomTUdomT<sT
35 27 31 34 syl2anc ¬xByB¬y<sxBNoBVUBT<sUdomTT=UdomTUdomT<sT
36 24 25 35 ecase23d ¬xByB¬y<sxBNoBVUBT<sUdomT