Step |
Hyp |
Ref |
Expression |
1 |
|
noinfbnd1.1 |
|
2 |
|
simpl1 |
|
3 |
|
simpl2 |
|
4 |
|
simprl |
|
5 |
|
simpl3 |
|
6 |
|
simp2l |
|
7 |
6
|
sselda |
|
8 |
|
simp3l |
|
9 |
6 8
|
sseldd |
|
10 |
9
|
adantr |
|
11 |
|
sltso |
|
12 |
|
soasym |
|
13 |
11 12
|
mpan |
|
14 |
7 10 13
|
syl2anc |
|
15 |
14
|
impr |
|
16 |
4 15
|
jca |
|
17 |
1
|
noinfbnd1lem2 |
|
18 |
2 3 5 16 17
|
syl112anc |
|
19 |
1
|
noinfbnd1lem3 |
|
20 |
2 3 4 18 19
|
syl112anc |
|
21 |
20
|
neneqd |
|
22 |
21
|
expr |
|
23 |
|
imnan |
|
24 |
22 23
|
sylib |
|
25 |
24
|
nrexdv |
|
26 |
|
breq2 |
|
27 |
26
|
rexbidv |
|
28 |
|
simpl1 |
|
29 |
|
dfral2 |
|
30 |
|
ralnex |
|
31 |
30
|
rexbii |
|
32 |
29 31
|
xchbinxr |
|
33 |
28 32
|
sylibr |
|
34 |
|
simpl3l |
|
35 |
27 33 34
|
rspcdva |
|
36 |
|
breq1 |
|
37 |
36
|
cbvrexvw |
|
38 |
35 37
|
sylib |
|
39 |
|
simpl2l |
|
40 |
39
|
adantr |
|
41 |
|
simprl |
|
42 |
40 41
|
sseldd |
|
43 |
34
|
adantr |
|
44 |
40 43
|
sseldd |
|
45 |
|
simpl2 |
|
46 |
1
|
noinfno |
|
47 |
45 46
|
syl |
|
48 |
47
|
adantr |
|
49 |
|
nodmon |
|
50 |
48 49
|
syl |
|
51 |
|
simpll1 |
|
52 |
|
simpll2 |
|
53 |
|
simpll3 |
|
54 |
|
simprr |
|
55 |
42 44 13
|
syl2anc |
|
56 |
54 55
|
mpd |
|
57 |
41 56
|
jca |
|
58 |
51 52 53 57 17
|
syl112anc |
|
59 |
|
simpl3r |
|
60 |
59
|
adantr |
|
61 |
58 60
|
eqtr4d |
|
62 |
|
simplr |
|
63 |
|
nogt01o |
|
64 |
42 44 50 61 54 62 63
|
syl321anc |
|
65 |
64
|
expr |
|
66 |
65
|
ancld |
|
67 |
66
|
reximdva |
|
68 |
38 67
|
mpd |
|
69 |
25 68
|
mtand |
|
70 |
69
|
neqned |
|