Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka . (Contributed by RP, 12-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ntrk0kbimka | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg | |
|
2 | 1 | ad2antrr | |
3 | 0elpw | |
|
4 | 3 | a1i | |
5 | simprr | |
|
6 | ineq1 | |
|
7 | 6 | eqeq1d | |
8 | fveq2 | |
|
9 | 8 | ineq1d | |
10 | 9 | eqeq1d | |
11 | 7 10 | imbi12d | |
12 | ineq2 | |
|
13 | 12 | eqeq1d | |
14 | fveq2 | |
|
15 | 14 | ineq2d | |
16 | 15 | eqeq1d | |
17 | 13 16 | imbi12d | |
18 | in0 | |
|
19 | pm5.5 | |
|
20 | 18 19 | mp1i | |
21 | 17 20 | bitrd | |
22 | 11 21 | rspc2va | |
23 | 2 4 5 22 | syl21anc | |
24 | 23 | ex | |
25 | elmapi | |
|
26 | 25 | adantl | |
27 | 3 | a1i | |
28 | 26 27 | ffvelcdmd | |
29 | 28 | elpwid | |
30 | simpl | |
|
31 | ineq1 | |
|
32 | incom | |
|
33 | 31 32 | eqtrdi | |
34 | 33 | eqeq1d | |
35 | 34 | biimpd | |
36 | reldisj | |
|
37 | 36 | biimpd | |
38 | difid | |
|
39 | 38 | sseq2i | |
40 | ss0 | |
|
41 | 39 40 | sylbi | |
42 | 37 41 | syl6com | |
43 | 35 42 | syl6com | |
44 | 43 | com13 | |
45 | 29 30 44 | syl2im | |
46 | 24 45 | mpdd | |