Step |
Hyp |
Ref |
Expression |
1 |
|
pwidg |
|
2 |
1
|
ad2antrr |
|
3 |
|
0elpw |
|
4 |
3
|
a1i |
|
5 |
|
simprr |
|
6 |
|
ineq1 |
|
7 |
6
|
eqeq1d |
|
8 |
|
fveq2 |
|
9 |
8
|
ineq1d |
|
10 |
9
|
eqeq1d |
|
11 |
7 10
|
imbi12d |
|
12 |
|
ineq2 |
|
13 |
12
|
eqeq1d |
|
14 |
|
fveq2 |
|
15 |
14
|
ineq2d |
|
16 |
15
|
eqeq1d |
|
17 |
13 16
|
imbi12d |
|
18 |
|
in0 |
|
19 |
|
pm5.5 |
|
20 |
18 19
|
mp1i |
|
21 |
17 20
|
bitrd |
|
22 |
11 21
|
rspc2va |
|
23 |
2 4 5 22
|
syl21anc |
|
24 |
23
|
ex |
|
25 |
|
elmapi |
|
26 |
25
|
adantl |
|
27 |
3
|
a1i |
|
28 |
26 27
|
ffvelrnd |
|
29 |
28
|
elpwid |
|
30 |
|
simpl |
|
31 |
|
ineq1 |
|
32 |
|
incom |
|
33 |
31 32
|
eqtrdi |
|
34 |
33
|
eqeq1d |
|
35 |
34
|
biimpd |
|
36 |
|
reldisj |
|
37 |
36
|
biimpd |
|
38 |
|
difid |
|
39 |
38
|
sseq2i |
|
40 |
|
ss0 |
|
41 |
39 40
|
sylbi |
|
42 |
37 41
|
syl6com |
|
43 |
35 42
|
syl6com |
|
44 |
43
|
com13 |
|
45 |
29 30 44
|
syl2im |
|
46 |
24 45
|
mpdd |
|