Metamath Proof Explorer


Theorem ntrk0kbimka

Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka . (Contributed by RP, 12-Jun-2021)

Ref Expression
Assertion ntrk0kbimka B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = I =

Proof

Step Hyp Ref Expression
1 pwidg B V B 𝒫 B
2 1 ad2antrr B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = B 𝒫 B
3 0elpw 𝒫 B
4 3 a1i B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = 𝒫 B
5 simprr B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = s 𝒫 B t 𝒫 B s t = I s I t =
6 ineq1 s = B s t = B t
7 6 eqeq1d s = B s t = B t =
8 fveq2 s = B I s = I B
9 8 ineq1d s = B I s I t = I B I t
10 9 eqeq1d s = B I s I t = I B I t =
11 7 10 imbi12d s = B s t = I s I t = B t = I B I t =
12 ineq2 t = B t = B
13 12 eqeq1d t = B t = B =
14 fveq2 t = I t = I
15 14 ineq2d t = I B I t = I B I
16 15 eqeq1d t = I B I t = I B I =
17 13 16 imbi12d t = B t = I B I t = B = I B I =
18 in0 B =
19 pm5.5 B = B = I B I = I B I =
20 18 19 mp1i t = B = I B I = I B I =
21 17 20 bitrd t = B t = I B I t = I B I =
22 11 21 rspc2va B 𝒫 B 𝒫 B s 𝒫 B t 𝒫 B s t = I s I t = I B I =
23 2 4 5 22 syl21anc B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = I B I =
24 23 ex B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = I B I =
25 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
26 25 adantl B V I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
27 3 a1i B V I 𝒫 B 𝒫 B 𝒫 B
28 26 27 ffvelrnd B V I 𝒫 B 𝒫 B I 𝒫 B
29 28 elpwid B V I 𝒫 B 𝒫 B I B
30 simpl I B = B s 𝒫 B t 𝒫 B s t = I s I t = I B = B
31 ineq1 I B = B I B I = B I
32 incom B I = I B
33 31 32 eqtrdi I B = B I B I = I B
34 33 eqeq1d I B = B I B I = I B =
35 34 biimpd I B = B I B I = I B =
36 reldisj I B I B = I B B
37 36 biimpd I B I B = I B B
38 difid B B =
39 38 sseq2i I B B I
40 ss0 I I =
41 39 40 sylbi I B B I =
42 37 41 syl6com I B = I B I =
43 35 42 syl6com I B I = I B = B I B I =
44 43 com13 I B I B = B I B I = I =
45 29 30 44 syl2im B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = I B I = I =
46 24 45 mpdd B V I 𝒫 B 𝒫 B I B = B s 𝒫 B t 𝒫 B s t = I s I t = I =