Description: Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrnei.o | |
|
ntrnei.f | |
||
ntrnei.r | |
||
Assertion | ntrneik4w | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | |
|
2 | ntrnei.f | |
|
3 | ntrnei.r | |
|
4 | dfcleq | |
|
5 | eqcom | |
|
6 | ralv | |
|
7 | 4 5 6 | 3bitr4i | |
8 | ssv | |
|
9 | 8 | a1i | |
10 | vex | |
|
11 | eldif | |
|
12 | 10 11 | mpbiran | |
13 | 1 2 3 | ntrneiiex | |
14 | elmapi | |
|
15 | 13 14 | syl | |
16 | 15 | ffvelcdmda | |
17 | 16 | elpwid | |
18 | 17 | sseld | |
19 | 18 | con3dimp | |
20 | 15 | adantr | |
21 | 20 16 | ffvelcdmd | |
22 | 21 | elpwid | |
23 | 22 | sseld | |
24 | 23 | con3dimp | |
25 | 19 24 | 2falsed | |
26 | 25 | ex | |
27 | 12 26 | biimtrid | |
28 | 27 | ralrimiv | |
29 | 9 28 | raldifeq | |
30 | 3 | adantr | |
31 | 30 | adantr | |
32 | simpr | |
|
33 | simplr | |
|
34 | 1 2 31 32 33 | ntrneiel | |
35 | 16 | adantr | |
36 | 1 2 31 32 35 | ntrneiel | |
37 | 34 36 | bibi12d | |
38 | 37 | ralbidva | |
39 | 29 38 | bitr3d | |
40 | 7 39 | bitrid | |
41 | 40 | ralbidva | |
42 | ralcom | |
|
43 | 41 42 | bitrdi | |