Metamath Proof Explorer


Theorem ocvpj

Description: The orthocomplement of a projection subspace is a projection subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses ocvpj.k K = proj W
ocvpj.o ˙ = ocv W
Assertion ocvpj W PreHil T dom K ˙ T dom K

Proof

Step Hyp Ref Expression
1 ocvpj.k K = proj W
2 ocvpj.o ˙ = ocv W
3 eqid ClSubSp W = ClSubSp W
4 1 3 pjcss W PreHil dom K ClSubSp W
5 4 sselda W PreHil T dom K T ClSubSp W
6 eqid Base W = Base W
7 6 3 cssss T ClSubSp W T Base W
8 5 7 syl W PreHil T dom K T Base W
9 eqid LSubSp W = LSubSp W
10 6 2 9 ocvlss W PreHil T Base W ˙ T LSubSp W
11 8 10 syldan W PreHil T dom K ˙ T LSubSp W
12 phllmod W PreHil W LMod
13 12 adantr W PreHil T dom K W LMod
14 lmodabl W LMod W Abel
15 13 14 syl W PreHil T dom K W Abel
16 9 lsssssubg W LMod LSubSp W SubGrp W
17 13 16 syl W PreHil T dom K LSubSp W SubGrp W
18 17 11 sseldd W PreHil T dom K ˙ T SubGrp W
19 3 9 csslss W PreHil T ClSubSp W T LSubSp W
20 5 19 syldan W PreHil T dom K T LSubSp W
21 17 20 sseldd W PreHil T dom K T SubGrp W
22 eqid LSSum W = LSSum W
23 22 lsmcom W Abel ˙ T SubGrp W T SubGrp W ˙ T LSSum W T = T LSSum W ˙ T
24 15 18 21 23 syl3anc W PreHil T dom K ˙ T LSSum W T = T LSSum W ˙ T
25 2 3 cssi T ClSubSp W T = ˙ ˙ T
26 5 25 syl W PreHil T dom K T = ˙ ˙ T
27 26 oveq2d W PreHil T dom K ˙ T LSSum W T = ˙ T LSSum W ˙ ˙ T
28 6 9 2 22 1 pjdm2 W PreHil T dom K T LSubSp W T LSSum W ˙ T = Base W
29 28 simplbda W PreHil T dom K T LSSum W ˙ T = Base W
30 24 27 29 3eqtr3d W PreHil T dom K ˙ T LSSum W ˙ ˙ T = Base W
31 6 9 2 22 1 pjdm2 W PreHil ˙ T dom K ˙ T LSubSp W ˙ T LSSum W ˙ ˙ T = Base W
32 31 adantr W PreHil T dom K ˙ T dom K ˙ T LSubSp W ˙ T LSSum W ˙ ˙ T = Base W
33 11 30 32 mpbir2and W PreHil T dom K ˙ T dom K