Metamath Proof Explorer


Theorem odbezout

Description: If N is coprime to the order of A , there is a modular inverse x to cancel multiplication by N . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses odmulgid.1 X=BaseG
odmulgid.2 O=odG
odmulgid.3 ·˙=G
Assertion odbezout GGrpAXNNgcdOA=1xx·˙N·˙A=A

Proof

Step Hyp Ref Expression
1 odmulgid.1 X=BaseG
2 odmulgid.2 O=odG
3 odmulgid.3 ·˙=G
4 simpl3 GGrpAXNNgcdOA=1N
5 simpl2 GGrpAXNNgcdOA=1AX
6 1 2 odcl AXOA0
7 5 6 syl GGrpAXNNgcdOA=1OA0
8 7 nn0zd GGrpAXNNgcdOA=1OA
9 bezout NOAxyNgcdOA=Nx+OAy
10 4 8 9 syl2anc GGrpAXNNgcdOA=1xyNgcdOA=Nx+OAy
11 oveq1 Nx+OAy=NgcdOANx+OAy·˙A=NgcdOA·˙A
12 11 eqcoms NgcdOA=Nx+OAyNx+OAy·˙A=NgcdOA·˙A
13 simpll1 GGrpAXNNgcdOA=1xyGGrp
14 4 adantr GGrpAXNNgcdOA=1xyN
15 simprl GGrpAXNNgcdOA=1xyx
16 14 15 zmulcld GGrpAXNNgcdOA=1xyNx
17 5 adantr GGrpAXNNgcdOA=1xyAX
18 17 6 syl GGrpAXNNgcdOA=1xyOA0
19 18 nn0zd GGrpAXNNgcdOA=1xyOA
20 simprr GGrpAXNNgcdOA=1xyy
21 19 20 zmulcld GGrpAXNNgcdOA=1xyOAy
22 eqid +G=+G
23 1 3 22 mulgdir GGrpNxOAyAXNx+OAy·˙A=Nx·˙A+GOAy·˙A
24 13 16 21 17 23 syl13anc GGrpAXNNgcdOA=1xyNx+OAy·˙A=Nx·˙A+GOAy·˙A
25 14 zcnd GGrpAXNNgcdOA=1xyN
26 15 zcnd GGrpAXNNgcdOA=1xyx
27 25 26 mulcomd GGrpAXNNgcdOA=1xyNx=x N
28 27 oveq1d GGrpAXNNgcdOA=1xyNx·˙A=x N·˙A
29 1 3 mulgass GGrpxNAXx N·˙A=x·˙N·˙A
30 13 15 14 17 29 syl13anc GGrpAXNNgcdOA=1xyx N·˙A=x·˙N·˙A
31 28 30 eqtrd GGrpAXNNgcdOA=1xyNx·˙A=x·˙N·˙A
32 dvdsmul1 OAyOAOAy
33 19 20 32 syl2anc GGrpAXNNgcdOA=1xyOAOAy
34 eqid 0G=0G
35 1 2 3 34 oddvds GGrpAXOAyOAOAyOAy·˙A=0G
36 13 17 21 35 syl3anc GGrpAXNNgcdOA=1xyOAOAyOAy·˙A=0G
37 33 36 mpbid GGrpAXNNgcdOA=1xyOAy·˙A=0G
38 31 37 oveq12d GGrpAXNNgcdOA=1xyNx·˙A+GOAy·˙A=x·˙N·˙A+G0G
39 1 3 mulgcl GGrpNAXN·˙AX
40 13 14 17 39 syl3anc GGrpAXNNgcdOA=1xyN·˙AX
41 1 3 mulgcl GGrpxN·˙AXx·˙N·˙AX
42 13 15 40 41 syl3anc GGrpAXNNgcdOA=1xyx·˙N·˙AX
43 1 22 34 grprid GGrpx·˙N·˙AXx·˙N·˙A+G0G=x·˙N·˙A
44 13 42 43 syl2anc GGrpAXNNgcdOA=1xyx·˙N·˙A+G0G=x·˙N·˙A
45 38 44 eqtrd GGrpAXNNgcdOA=1xyNx·˙A+GOAy·˙A=x·˙N·˙A
46 24 45 eqtrd GGrpAXNNgcdOA=1xyNx+OAy·˙A=x·˙N·˙A
47 simplr GGrpAXNNgcdOA=1xyNgcdOA=1
48 47 oveq1d GGrpAXNNgcdOA=1xyNgcdOA·˙A=1·˙A
49 1 3 mulg1 AX1·˙A=A
50 17 49 syl GGrpAXNNgcdOA=1xy1·˙A=A
51 48 50 eqtrd GGrpAXNNgcdOA=1xyNgcdOA·˙A=A
52 46 51 eqeq12d GGrpAXNNgcdOA=1xyNx+OAy·˙A=NgcdOA·˙Ax·˙N·˙A=A
53 12 52 imbitrid GGrpAXNNgcdOA=1xyNgcdOA=Nx+OAyx·˙N·˙A=A
54 53 anassrs GGrpAXNNgcdOA=1xyNgcdOA=Nx+OAyx·˙N·˙A=A
55 54 rexlimdva GGrpAXNNgcdOA=1xyNgcdOA=Nx+OAyx·˙N·˙A=A
56 55 reximdva GGrpAXNNgcdOA=1xyNgcdOA=Nx+OAyxx·˙N·˙A=A
57 10 56 mpd GGrpAXNNgcdOA=1xx·˙N·˙A=A