Description: If N is coprime to the order of A , there is a modular inverse x to cancel multiplication by N . (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odmulgid.1 | |
|
odmulgid.2 | |
||
odmulgid.3 | |
||
Assertion | odbezout | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odmulgid.1 | |
|
2 | odmulgid.2 | |
|
3 | odmulgid.3 | |
|
4 | simpl3 | |
|
5 | simpl2 | |
|
6 | 1 2 | odcl | |
7 | 5 6 | syl | |
8 | 7 | nn0zd | |
9 | bezout | |
|
10 | 4 8 9 | syl2anc | |
11 | oveq1 | |
|
12 | 11 | eqcoms | |
13 | simpll1 | |
|
14 | 4 | adantr | |
15 | simprl | |
|
16 | 14 15 | zmulcld | |
17 | 5 | adantr | |
18 | 17 6 | syl | |
19 | 18 | nn0zd | |
20 | simprr | |
|
21 | 19 20 | zmulcld | |
22 | eqid | |
|
23 | 1 3 22 | mulgdir | |
24 | 13 16 21 17 23 | syl13anc | |
25 | 14 | zcnd | |
26 | 15 | zcnd | |
27 | 25 26 | mulcomd | |
28 | 27 | oveq1d | |
29 | 1 3 | mulgass | |
30 | 13 15 14 17 29 | syl13anc | |
31 | 28 30 | eqtrd | |
32 | dvdsmul1 | |
|
33 | 19 20 32 | syl2anc | |
34 | eqid | |
|
35 | 1 2 3 34 | oddvds | |
36 | 13 17 21 35 | syl3anc | |
37 | 33 36 | mpbid | |
38 | 31 37 | oveq12d | |
39 | 1 3 | mulgcl | |
40 | 13 14 17 39 | syl3anc | |
41 | 1 3 | mulgcl | |
42 | 13 15 40 41 | syl3anc | |
43 | 1 22 34 | grprid | |
44 | 13 42 43 | syl2anc | |
45 | 38 44 | eqtrd | |
46 | 24 45 | eqtrd | |
47 | simplr | |
|
48 | 47 | oveq1d | |
49 | 1 3 | mulg1 | |
50 | 17 49 | syl | |
51 | 48 50 | eqtrd | |
52 | 46 51 | eqeq12d | |
53 | 12 52 | imbitrid | |
54 | 53 | anassrs | |
55 | 54 | rexlimdva | |
56 | 55 | reximdva | |
57 | 10 56 | mpd | |