| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odmulgid.1 |
|
| 2 |
|
odmulgid.2 |
|
| 3 |
|
odmulgid.3 |
|
| 4 |
|
simpl3 |
|
| 5 |
|
simpl2 |
|
| 6 |
1 2
|
odcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
nn0zd |
|
| 9 |
|
bezout |
|
| 10 |
4 8 9
|
syl2anc |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
eqcoms |
|
| 13 |
|
simpll1 |
|
| 14 |
4
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
14 15
|
zmulcld |
|
| 17 |
5
|
adantr |
|
| 18 |
17 6
|
syl |
|
| 19 |
18
|
nn0zd |
|
| 20 |
|
simprr |
|
| 21 |
19 20
|
zmulcld |
|
| 22 |
|
eqid |
|
| 23 |
1 3 22
|
mulgdir |
|
| 24 |
13 16 21 17 23
|
syl13anc |
|
| 25 |
14
|
zcnd |
|
| 26 |
15
|
zcnd |
|
| 27 |
25 26
|
mulcomd |
|
| 28 |
27
|
oveq1d |
|
| 29 |
1 3
|
mulgass |
|
| 30 |
13 15 14 17 29
|
syl13anc |
|
| 31 |
28 30
|
eqtrd |
|
| 32 |
|
dvdsmul1 |
|
| 33 |
19 20 32
|
syl2anc |
|
| 34 |
|
eqid |
|
| 35 |
1 2 3 34
|
oddvds |
|
| 36 |
13 17 21 35
|
syl3anc |
|
| 37 |
33 36
|
mpbid |
|
| 38 |
31 37
|
oveq12d |
|
| 39 |
1 3
|
mulgcl |
|
| 40 |
13 14 17 39
|
syl3anc |
|
| 41 |
1 3
|
mulgcl |
|
| 42 |
13 15 40 41
|
syl3anc |
|
| 43 |
1 22 34
|
grprid |
|
| 44 |
13 42 43
|
syl2anc |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
24 45
|
eqtrd |
|
| 47 |
|
simplr |
|
| 48 |
47
|
oveq1d |
|
| 49 |
1 3
|
mulg1 |
|
| 50 |
17 49
|
syl |
|
| 51 |
48 50
|
eqtrd |
|
| 52 |
46 51
|
eqeq12d |
|
| 53 |
12 52
|
imbitrid |
|
| 54 |
53
|
anassrs |
|
| 55 |
54
|
rexlimdva |
|
| 56 |
55
|
reximdva |
|
| 57 |
10 56
|
mpd |
|