| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odval.1 |  | 
						
							| 2 |  | odval.2 |  | 
						
							| 3 |  | odval.3 |  | 
						
							| 4 |  | odval.4 |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 5 1 | eqtr4di |  | 
						
							| 7 |  | fveq2 |  | 
						
							| 8 | 7 2 | eqtr4di |  | 
						
							| 9 | 8 | oveqd |  | 
						
							| 10 |  | fveq2 |  | 
						
							| 11 | 10 3 | eqtr4di |  | 
						
							| 12 | 9 11 | eqeq12d |  | 
						
							| 13 | 12 | rabbidv |  | 
						
							| 14 | 13 | csbeq1d |  | 
						
							| 15 | 6 14 | mpteq12dv |  | 
						
							| 16 |  | df-od |  | 
						
							| 17 | 1 | fvexi |  | 
						
							| 18 |  | nn0ex |  | 
						
							| 19 |  | nnex |  | 
						
							| 20 | 19 | rabex |  | 
						
							| 21 |  | eqeq1 |  | 
						
							| 22 |  | infeq1 |  | 
						
							| 23 | 21 22 | ifbieq2d |  | 
						
							| 24 | 20 23 | csbie |  | 
						
							| 25 |  | 0nn0 |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | df-ne |  | 
						
							| 28 |  | ssrab2 |  | 
						
							| 29 |  | nnuz |  | 
						
							| 30 | 28 29 | sseqtri |  | 
						
							| 31 |  | infssuzcl |  | 
						
							| 32 | 30 31 | mpan |  | 
						
							| 33 | 28 32 | sselid |  | 
						
							| 34 | 27 33 | sylbir |  | 
						
							| 35 | 34 | nnnn0d |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 | 26 36 | ifclda |  | 
						
							| 38 | 37 | mptru |  | 
						
							| 39 | 24 38 | eqeltri |  | 
						
							| 40 | 39 | rgenw |  | 
						
							| 41 | 17 18 40 | mptexw |  | 
						
							| 42 | 15 16 41 | fvmpt |  | 
						
							| 43 |  | fvprc |  | 
						
							| 44 |  | fvprc |  | 
						
							| 45 | 1 44 | eqtrid |  | 
						
							| 46 | 45 | mpteq1d |  | 
						
							| 47 |  | mpt0 |  | 
						
							| 48 | 46 47 | eqtrdi |  | 
						
							| 49 | 43 48 | eqtr4d |  | 
						
							| 50 | 42 49 | pm2.61i |  | 
						
							| 51 | 4 50 | eqtri |  |