Metamath Proof Explorer


Theorem ofrn2

Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Hypotheses ofrn.1 φF:AB
ofrn.2 φG:AB
ofrn.3 φ+˙:B×BC
ofrn.4 φAV
Assertion ofrn2 φranF+˙fG+˙ranF×ranG

Proof

Step Hyp Ref Expression
1 ofrn.1 φF:AB
2 ofrn.2 φG:AB
3 ofrn.3 φ+˙:B×BC
4 ofrn.4 φAV
5 1 ffnd φFFnA
6 simprl φaAz=Fa+˙GaaA
7 fnfvelrn FFnAaAFaranF
8 5 6 7 syl2an2r φaAz=Fa+˙GaFaranF
9 2 ffnd φGFnA
10 fnfvelrn GFnAaAGaranG
11 9 6 10 syl2an2r φaAz=Fa+˙GaGaranG
12 simprr φaAz=Fa+˙Gaz=Fa+˙Ga
13 rspceov FaranFGaranGz=Fa+˙GaxranFyranGz=x+˙y
14 8 11 12 13 syl3anc φaAz=Fa+˙GaxranFyranGz=x+˙y
15 14 rexlimdvaa φaAz=Fa+˙GaxranFyranGz=x+˙y
16 15 ss2abdv φz|aAz=Fa+˙Gaz|xranFyranGz=x+˙y
17 inidm AA=A
18 eqidd φaAFa=Fa
19 eqidd φaAGa=Ga
20 5 9 4 4 17 18 19 offval φF+˙fG=aAFa+˙Ga
21 20 rneqd φranF+˙fG=ranaAFa+˙Ga
22 eqid aAFa+˙Ga=aAFa+˙Ga
23 22 rnmpt ranaAFa+˙Ga=z|aAz=Fa+˙Ga
24 21 23 eqtrdi φranF+˙fG=z|aAz=Fa+˙Ga
25 3 ffnd φ+˙FnB×B
26 1 frnd φranFB
27 2 frnd φranGB
28 xpss12 ranFBranGBranF×ranGB×B
29 26 27 28 syl2anc φranF×ranGB×B
30 ovelimab +˙FnB×BranF×ranGB×Bz+˙ranF×ranGxranFyranGz=x+˙y
31 25 29 30 syl2anc φz+˙ranF×ranGxranFyranGz=x+˙y
32 31 eqabdv φ+˙ranF×ranG=z|xranFyranGz=x+˙y
33 16 24 32 3sstr4d φranF+˙fG+˙ranF×ranG