Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpaddlt.0 | |
|
ogrpaddlt.1 | |
||
ogrpaddlt.2 | |
||
ogrpaddltrd.1 | |
||
ogrpaddltrd.2 | |
||
ogrpaddltrd.3 | |
||
ogrpaddltrd.4 | |
||
ogrpaddltrd.5 | |
||
Assertion | ogrpaddltrbid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpaddlt.0 | |
|
2 | ogrpaddlt.1 | |
|
3 | ogrpaddlt.2 | |
|
4 | ogrpaddltrd.1 | |
|
5 | ogrpaddltrd.2 | |
|
6 | ogrpaddltrd.3 | |
|
7 | ogrpaddltrd.4 | |
|
8 | ogrpaddltrd.5 | |
|
9 | 4 | adantr | |
10 | 5 | adantr | |
11 | 6 | adantr | |
12 | 7 | adantr | |
13 | 8 | adantr | |
14 | simpr | |
|
15 | 1 2 3 9 10 11 12 13 14 | ogrpaddltrd | |
16 | 4 | adantr | |
17 | 5 | adantr | |
18 | ogrpgrp | |
|
19 | 5 18 | syl | |
20 | 19 | adantr | |
21 | 6 | adantr | |
22 | 8 | adantr | |
23 | eqid | |
|
24 | eqid | |
|
25 | 3 23 24 | oppgplus | |
26 | 23 1 | oppgbas | |
27 | 26 24 | grpcl | |
28 | 25 27 | eqeltrrid | |
29 | 20 21 22 28 | syl3anc | |
30 | 7 | adantr | |
31 | 3 23 24 | oppgplus | |
32 | 26 24 | grpcl | |
33 | 31 32 | eqeltrrid | |
34 | 20 30 22 33 | syl3anc | |
35 | 23 | oppggrpb | |
36 | 20 35 | sylibr | |
37 | eqid | |
|
38 | 1 37 | grpinvcl | |
39 | 36 22 38 | syl2anc | |
40 | simpr | |
|
41 | 1 2 3 16 17 29 34 39 40 | ogrpaddltrd | |
42 | eqid | |
|
43 | 1 3 42 37 | grplinv | |
44 | 36 22 43 | syl2anc | |
45 | 44 | oveq1d | |
46 | 1 3 | grpass | |
47 | 36 39 22 21 46 | syl13anc | |
48 | 1 3 42 | grplid | |
49 | 36 21 48 | syl2anc | |
50 | 45 47 49 | 3eqtr3d | |
51 | 44 | oveq1d | |
52 | 1 3 | grpass | |
53 | 36 39 22 30 52 | syl13anc | |
54 | 1 3 42 | grplid | |
55 | 36 30 54 | syl2anc | |
56 | 51 53 55 | 3eqtr3d | |
57 | 41 50 56 | 3brtr3d | |
58 | 15 57 | impbida | |