Metamath Proof Explorer


Theorem ogrpaddltrbid

Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018)

Ref Expression
Hypotheses ogrpaddlt.0 B=BaseG
ogrpaddlt.1 <˙=<G
ogrpaddlt.2 +˙=+G
ogrpaddltrd.1 φGV
ogrpaddltrd.2 φopp𝑔GoGrp
ogrpaddltrd.3 φXB
ogrpaddltrd.4 φYB
ogrpaddltrd.5 φZB
Assertion ogrpaddltrbid φX<˙YZ+˙X<˙Z+˙Y

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 B=BaseG
2 ogrpaddlt.1 <˙=<G
3 ogrpaddlt.2 +˙=+G
4 ogrpaddltrd.1 φGV
5 ogrpaddltrd.2 φopp𝑔GoGrp
6 ogrpaddltrd.3 φXB
7 ogrpaddltrd.4 φYB
8 ogrpaddltrd.5 φZB
9 4 adantr φX<˙YGV
10 5 adantr φX<˙Yopp𝑔GoGrp
11 6 adantr φX<˙YXB
12 7 adantr φX<˙YYB
13 8 adantr φX<˙YZB
14 simpr φX<˙YX<˙Y
15 1 2 3 9 10 11 12 13 14 ogrpaddltrd φX<˙YZ+˙X<˙Z+˙Y
16 4 adantr φZ+˙X<˙Z+˙YGV
17 5 adantr φZ+˙X<˙Z+˙Yopp𝑔GoGrp
18 ogrpgrp opp𝑔GoGrpopp𝑔GGrp
19 5 18 syl φopp𝑔GGrp
20 19 adantr φZ+˙X<˙Z+˙Yopp𝑔GGrp
21 6 adantr φZ+˙X<˙Z+˙YXB
22 8 adantr φZ+˙X<˙Z+˙YZB
23 eqid opp𝑔G=opp𝑔G
24 eqid +opp𝑔G=+opp𝑔G
25 3 23 24 oppgplus X+opp𝑔GZ=Z+˙X
26 23 1 oppgbas B=Baseopp𝑔G
27 26 24 grpcl opp𝑔GGrpXBZBX+opp𝑔GZB
28 25 27 eqeltrrid opp𝑔GGrpXBZBZ+˙XB
29 20 21 22 28 syl3anc φZ+˙X<˙Z+˙YZ+˙XB
30 7 adantr φZ+˙X<˙Z+˙YYB
31 3 23 24 oppgplus Y+opp𝑔GZ=Z+˙Y
32 26 24 grpcl opp𝑔GGrpYBZBY+opp𝑔GZB
33 31 32 eqeltrrid opp𝑔GGrpYBZBZ+˙YB
34 20 30 22 33 syl3anc φZ+˙X<˙Z+˙YZ+˙YB
35 23 oppggrpb GGrpopp𝑔GGrp
36 20 35 sylibr φZ+˙X<˙Z+˙YGGrp
37 eqid invgG=invgG
38 1 37 grpinvcl GGrpZBinvgGZB
39 36 22 38 syl2anc φZ+˙X<˙Z+˙YinvgGZB
40 simpr φZ+˙X<˙Z+˙YZ+˙X<˙Z+˙Y
41 1 2 3 16 17 29 34 39 40 ogrpaddltrd φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙X<˙invgGZ+˙Z+˙Y
42 eqid 0G=0G
43 1 3 42 37 grplinv GGrpZBinvgGZ+˙Z=0G
44 36 22 43 syl2anc φZ+˙X<˙Z+˙YinvgGZ+˙Z=0G
45 44 oveq1d φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙X=0G+˙X
46 1 3 grpass GGrpinvgGZBZBXBinvgGZ+˙Z+˙X=invgGZ+˙Z+˙X
47 36 39 22 21 46 syl13anc φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙X=invgGZ+˙Z+˙X
48 1 3 42 grplid GGrpXB0G+˙X=X
49 36 21 48 syl2anc φZ+˙X<˙Z+˙Y0G+˙X=X
50 45 47 49 3eqtr3d φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙X=X
51 44 oveq1d φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙Y=0G+˙Y
52 1 3 grpass GGrpinvgGZBZBYBinvgGZ+˙Z+˙Y=invgGZ+˙Z+˙Y
53 36 39 22 30 52 syl13anc φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙Y=invgGZ+˙Z+˙Y
54 1 3 42 grplid GGrpYB0G+˙Y=Y
55 36 30 54 syl2anc φZ+˙X<˙Z+˙Y0G+˙Y=Y
56 51 53 55 3eqtr3d φZ+˙X<˙Z+˙YinvgGZ+˙Z+˙Y=Y
57 41 50 56 3brtr3d φZ+˙X<˙Z+˙YX<˙Y
58 15 57 impbida φX<˙YZ+˙X<˙Z+˙Y