Metamath Proof Explorer


Theorem omessle

Description: The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omessle.o φOOutMeas
omessle.x X=domO
omessle.b φBX
omessle.a φAB
Assertion omessle φOAOB

Proof

Step Hyp Ref Expression
1 omessle.o φOOutMeas
2 omessle.x X=domO
3 omessle.b φBX
4 omessle.a φAB
5 1 2 unidmex φXV
6 5 3 ssexd φBV
7 6 4 ssexd φAV
8 elpwg AVA𝒫BAB
9 7 8 syl φA𝒫BAB
10 4 9 mpbird φA𝒫B
11 3 2 sseqtrdi φBdomO
12 elpwg BVB𝒫domOBdomO
13 6 12 syl φB𝒫domOBdomO
14 11 13 mpbird φB𝒫domO
15 isome OOutMeasOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
16 1 15 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
17 1 16 mpbid φO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
18 17 simplrd φy𝒫domOz𝒫yOzOy
19 pweq y=B𝒫y=𝒫B
20 19 raleqdv y=Bz𝒫yOzOyz𝒫BOzOy
21 fveq2 y=BOy=OB
22 21 breq2d y=BOzOyOzOB
23 22 ralbidv y=Bz𝒫BOzOyz𝒫BOzOB
24 20 23 bitrd y=Bz𝒫yOzOyz𝒫BOzOB
25 24 rspcva B𝒫domOy𝒫domOz𝒫yOzOyz𝒫BOzOB
26 14 18 25 syl2anc φz𝒫BOzOB
27 fveq2 z=AOz=OA
28 27 breq1d z=AOzOBOAOB
29 28 rspcva A𝒫Bz𝒫BOzOBOAOB
30 10 26 29 syl2anc φOAOB