Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
|
2 |
|
omndmul.1 |
|
3 |
|
omndmul3.m |
|
4 |
|
omndmul3.0 |
|
5 |
|
omndmul3.o |
|
6 |
|
omndmul3.1 |
|
7 |
|
omndmul3.2 |
|
8 |
|
omndmul3.3 |
|
9 |
|
omndmul3.4 |
|
10 |
|
omndmul3.5 |
|
11 |
|
omndmnd |
|
12 |
5 11
|
syl |
|
13 |
1 4
|
mndidcl |
|
14 |
12 13
|
syl |
|
15 |
|
nn0sub |
|
16 |
15
|
biimpa |
|
17 |
6 7 8 16
|
syl21anc |
|
18 |
1 3
|
mulgnn0cl |
|
19 |
12 17 9 18
|
syl3anc |
|
20 |
1 3
|
mulgnn0cl |
|
21 |
12 6 9 20
|
syl3anc |
|
22 |
1 2 3 4
|
omndmul2 |
|
23 |
5 9 17 10 22
|
syl121anc |
|
24 |
|
eqid |
|
25 |
1 2 24
|
omndadd |
|
26 |
5 14 19 21 23 25
|
syl131anc |
|
27 |
1 24 4
|
mndlid |
|
28 |
12 21 27
|
syl2anc |
|
29 |
1 3 24
|
mulgnn0dir |
|
30 |
12 17 6 9 29
|
syl13anc |
|
31 |
7
|
nn0cnd |
|
32 |
6
|
nn0cnd |
|
33 |
31 32
|
npcand |
|
34 |
33
|
oveq1d |
|
35 |
30 34
|
eqtr3d |
|
36 |
26 28 35
|
3brtr3d |
|