Metamath Proof Explorer


Theorem onmcl

Description: If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025)

Ref Expression
Assertion onmcl AOnBOnNωAω𝑜BA𝑜Nω𝑜B

Proof

Step Hyp Ref Expression
1 oveq1 A=A𝑜N=𝑜N
2 simp3 AOnBOnNωNω
3 nnon NωNOn
4 om0r NOn𝑜N=
5 2 3 4 3syl AOnBOnNω𝑜N=
6 1 5 sylan9eqr AOnBOnNωA=A𝑜N=
7 simpl2 AOnBOnNωA=BOn
8 omelon ωOn
9 7 8 jctil AOnBOnNωA=ωOnBOn
10 peano1 ω
11 oen0 ωOnBOnωω𝑜B
12 9 10 11 sylancl AOnBOnNωA=ω𝑜B
13 6 12 eqeltrd AOnBOnNωA=A𝑜Nω𝑜B
14 13 a1d AOnBOnNωA=Aω𝑜BA𝑜Nω𝑜B
15 2 adantr AOnBOnNωANω
16 simp1 AOnBOnNωAOn
17 16 anim1i AOnBOnNωAAOnA
18 ondif1 AOn1𝑜AOnA
19 17 18 sylibr AOnBOnNωAAOn1𝑜
20 simpl2 AOnBOnNωABOn
21 oveq2 x=A𝑜x=A𝑜
22 21 eleq1d x=A𝑜xω𝑜BA𝑜ω𝑜B
23 22 imbi2d x=AOn1𝑜BOnAω𝑜BA𝑜xω𝑜BAOn1𝑜BOnAω𝑜BA𝑜ω𝑜B
24 oveq2 x=yA𝑜x=A𝑜y
25 24 eleq1d x=yA𝑜xω𝑜BA𝑜yω𝑜B
26 25 imbi2d x=yAOn1𝑜BOnAω𝑜BA𝑜xω𝑜BAOn1𝑜BOnAω𝑜BA𝑜yω𝑜B
27 oveq2 x=sucyA𝑜x=A𝑜sucy
28 27 eleq1d x=sucyA𝑜xω𝑜BA𝑜sucyω𝑜B
29 28 imbi2d x=sucyAOn1𝑜BOnAω𝑜BA𝑜xω𝑜BAOn1𝑜BOnAω𝑜BA𝑜sucyω𝑜B
30 oveq2 x=NA𝑜x=A𝑜N
31 30 eleq1d x=NA𝑜xω𝑜BA𝑜Nω𝑜B
32 31 imbi2d x=NAOn1𝑜BOnAω𝑜BA𝑜xω𝑜BAOn1𝑜BOnAω𝑜BA𝑜Nω𝑜B
33 eldifi AOn1𝑜AOn
34 om0 AOnA𝑜=
35 33 34 syl AOn1𝑜A𝑜=
36 35 adantr AOn1𝑜BOnA𝑜=
37 8 jctl BOnωOnBOn
38 37 10 11 sylancl BOnω𝑜B
39 38 adantl AOn1𝑜BOnω𝑜B
40 36 39 eqeltrd AOn1𝑜BOnA𝑜ω𝑜B
41 40 adantr AOn1𝑜BOnAω𝑜BA𝑜ω𝑜B
42 33 adantr AOn1𝑜BOnAOn
43 42 ad2antrl yωAOn1𝑜BOnAω𝑜BAOn
44 simpll yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜Byω
45 onmsuc AOnyωA𝑜sucy=A𝑜y+𝑜A
46 43 44 45 syl2an2r yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BA𝑜sucy=A𝑜y+𝑜A
47 simpr yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BA𝑜yω𝑜B
48 simplrr yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BAω𝑜B
49 eqid ω𝑜B=ω𝑜B
50 49 jctl BOnω𝑜B=ω𝑜BBOn
51 50 olcd BOnω𝑜B=ω𝑜B=ω𝑜BBOn
52 51 adantl AOn1𝑜BOnω𝑜B=ω𝑜B=ω𝑜BBOn
53 52 ad2antrl yωAOn1𝑜BOnAω𝑜Bω𝑜B=ω𝑜B=ω𝑜BBOn
54 53 adantr yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜Bω𝑜B=ω𝑜B=ω𝑜BBOn
55 oacl2g A𝑜yω𝑜BAω𝑜Bω𝑜B=ω𝑜B=ω𝑜BBOnA𝑜y+𝑜Aω𝑜B
56 47 48 54 55 syl21anc yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BA𝑜y+𝑜Aω𝑜B
57 46 56 eqeltrd yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BA𝑜sucyω𝑜B
58 57 exp31 yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BA𝑜sucyω𝑜B
59 58 a2d yωAOn1𝑜BOnAω𝑜BA𝑜yω𝑜BAOn1𝑜BOnAω𝑜BA𝑜sucyω𝑜B
60 23 26 29 32 41 59 finds NωAOn1𝑜BOnAω𝑜BA𝑜Nω𝑜B
61 60 expdimp NωAOn1𝑜BOnAω𝑜BA𝑜Nω𝑜B
62 15 19 20 61 syl12anc AOnBOnNωAAω𝑜BA𝑜Nω𝑜B
63 on0eqel AOnA=A
64 16 63 syl AOnBOnNωA=A
65 14 62 64 mpjaodan AOnBOnNωAω𝑜BA𝑜Nω𝑜B