Description: If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | simp3 | |
|
3 | nnon | |
|
4 | om0r | |
|
5 | 2 3 4 | 3syl | |
6 | 1 5 | sylan9eqr | |
7 | simpl2 | |
|
8 | omelon | |
|
9 | 7 8 | jctil | |
10 | peano1 | |
|
11 | oen0 | |
|
12 | 9 10 11 | sylancl | |
13 | 6 12 | eqeltrd | |
14 | 13 | a1d | |
15 | 2 | adantr | |
16 | simp1 | |
|
17 | 16 | anim1i | |
18 | ondif1 | |
|
19 | 17 18 | sylibr | |
20 | simpl2 | |
|
21 | oveq2 | |
|
22 | 21 | eleq1d | |
23 | 22 | imbi2d | |
24 | oveq2 | |
|
25 | 24 | eleq1d | |
26 | 25 | imbi2d | |
27 | oveq2 | |
|
28 | 27 | eleq1d | |
29 | 28 | imbi2d | |
30 | oveq2 | |
|
31 | 30 | eleq1d | |
32 | 31 | imbi2d | |
33 | eldifi | |
|
34 | om0 | |
|
35 | 33 34 | syl | |
36 | 35 | adantr | |
37 | 8 | jctl | |
38 | 37 10 11 | sylancl | |
39 | 38 | adantl | |
40 | 36 39 | eqeltrd | |
41 | 40 | adantr | |
42 | 33 | adantr | |
43 | 42 | ad2antrl | |
44 | simpll | |
|
45 | onmsuc | |
|
46 | 43 44 45 | syl2an2r | |
47 | simpr | |
|
48 | simplrr | |
|
49 | eqid | |
|
50 | 49 | jctl | |
51 | 50 | olcd | |
52 | 51 | adantl | |
53 | 52 | ad2antrl | |
54 | 53 | adantr | |
55 | oacl2g | |
|
56 | 47 48 54 55 | syl21anc | |
57 | 46 56 | eqeltrd | |
58 | 57 | exp31 | |
59 | 58 | a2d | |
60 | 23 26 29 32 41 59 | finds | |
61 | 60 | expdimp | |
62 | 15 19 20 61 | syl12anc | |
63 | on0eqel | |
|
64 | 16 63 | syl | |
65 | 14 62 64 | mpjaodan | |