Metamath Proof Explorer


Theorem onomeneqOLD

Description: Obsolete version of onomeneq as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onomeneqOLD AOnBωABA=B

Proof

Step Hyp Ref Expression
1 php5 Bω¬BsucB
2 1 ad2antlr AOnBωAB¬BsucB
3 enen1 ABAsucBBsucB
4 3 adantl AOnBωABAsucBBsucB
5 2 4 mtbird AOnBωAB¬AsucB
6 peano2 BωsucBω
7 sssucid BsucB
8 ssdomg sucBωBsucBBsucB
9 6 7 8 mpisyl BωBsucB
10 endomtr ABBsucBAsucB
11 9 10 sylan2 ABBωAsucB
12 11 ancoms BωABAsucB
13 12 a1d BωABωAAsucB
14 13 adantll AOnBωABωAAsucB
15 ssel ωABωBA
16 15 com12 BωωABA
17 16 adantr BωAOnωABA
18 eloni AOnOrdA
19 ordelsuc BωOrdABAsucBA
20 18 19 sylan2 BωAOnBAsucBA
21 17 20 sylibd BωAOnωAsucBA
22 ssdomg AOnsucBAsucBA
23 22 adantl BωAOnsucBAsucBA
24 21 23 syld BωAOnωAsucBA
25 24 ancoms AOnBωωAsucBA
26 25 adantr AOnBωABωAsucBA
27 14 26 jcad AOnBωABωAAsucBsucBA
28 sbth AsucBsucBAAsucB
29 27 28 syl6 AOnBωABωAAsucB
30 5 29 mtod AOnBωAB¬ωA
31 ordom Ordω
32 ordtri1 OrdωOrdAωA¬Aω
33 31 18 32 sylancr AOnωA¬Aω
34 33 con2bid AOnAω¬ωA
35 34 ad2antrr AOnBωABAω¬ωA
36 30 35 mpbird AOnBωABAω
37 simplr AOnBωABBω
38 36 37 jca AOnBωABAωBω
39 nneneq AωBωABA=B
40 39 biimpa AωBωABA=B
41 38 40 sylancom AOnBωABA=B
42 41 ex AOnBωABA=B
43 eqeng AOnA=BAB
44 43 adantr AOnBωA=BAB
45 42 44 impbid AOnBωABA=B