| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnregcld.1 |
|
| 2 |
1
|
ntropn |
|
| 3 |
|
eqcom |
|
| 4 |
3
|
biimpi |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
rspceeqv |
|
| 7 |
2 4 6
|
syl2an |
|
| 8 |
7
|
ex |
|
| 9 |
|
simpl |
|
| 10 |
1
|
eltopss |
|
| 11 |
1
|
clsss3 |
|
| 12 |
10 11
|
syldan |
|
| 13 |
1
|
ntrss2 |
|
| 14 |
12 13
|
syldan |
|
| 15 |
1
|
clsss |
|
| 16 |
9 12 14 15
|
syl3anc |
|
| 17 |
1
|
clsidm |
|
| 18 |
10 17
|
syldan |
|
| 19 |
16 18
|
sseqtrd |
|
| 20 |
1
|
ntrss3 |
|
| 21 |
12 20
|
syldan |
|
| 22 |
|
simpr |
|
| 23 |
1
|
sscls |
|
| 24 |
10 23
|
syldan |
|
| 25 |
1
|
ssntr |
|
| 26 |
9 12 22 24 25
|
syl22anc |
|
| 27 |
1
|
clsss |
|
| 28 |
9 21 26 27
|
syl3anc |
|
| 29 |
19 28
|
eqssd |
|
| 30 |
29
|
adantlr |
|
| 31 |
|
2fveq3 |
|
| 32 |
|
id |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
30 33
|
syl5ibrcom |
|
| 35 |
34
|
rexlimdva |
|
| 36 |
8 35
|
impbid |
|